

Contents

Introducing Android Robot Hovis Genie

 1.1 Hovis Development Background

 1.2 Hovis Genie Features

 (1) Hovis Lite
 (2) Hovis Genie

 1.3 Hovis Genie Hardware
 (1) Robot body

 (2) Face

 (3) Hovis Genie specification

 1.4 Hovis Genie Software Features
 (1) MPSU (DRC-005T), OPSU (DRC-004TO), MID Side Board

 (2) MID - Android

 1.5 Running Hovis Genie Application
 (1) Main screen

 (2) Autonomous operation

 (3) Remote Control

 (4) Adapting Contents for Robot Service

 (5) Purpose & application of the provided software

01

Android Robot (Genie) Programming

3.1 HelloGenie Project Creation

3.2 Running HelloGenie Project

3.3 HelloGenie Project Basic Structure

 (1) AndroidManifest.xml

 (2) MainActivity.java and activity_main.xml

03

02
Creating Development Environment
for Android & Robot

 2.1 JDK Installation

 2.2 Android SDK installation

 2.3 Eclipse installation & environment setup

Hovis Genie Robot API

(Application Programming Interface)

5.1. Drivetrain Functions

5.2. Navigation Functions

5.3. Sensor Functions

5.4. TTS(Text-to-Speech) Functions

5.5. Sound(Sound effects) Functions

5.6. Multimedia(Audio & Video) Functions

5.7 Motion & Servo Motor Related Functions

5.8 Head LED Controll Related Functions

05

Hovis Genie Examples

6.1. Main Screen

6.2. Drivetrain Control

6.3. Motion Control

6.4. Head LED Control

6.5. TTS Control

6.6. Distance Sensor Control

6.7. Touch Sensor Control

06

Starting Hovis Genie Robot Programming

4.1 Genie Api Demo Project Creation

4.2 Genie Api Demo Application Class

4.3 Creating Base Activity for Robot System

04

Learning With HOVIS Genie/App Android Robot Programming

8

Previously developed service robots were large units incorporating touch screens

made for PCs which users operated from standing positions. These robots were

mostly developed as part of public sector projects for use in public facilities rather

than for use by the consumers. These service robots had limited service contents

and could only be programmed by the supplier (manufacturer). Android robot Hovis

was developed to overcome these limitations and to expand the services provided

by the robot.

The name HOVIS is derived from ‘Home Service’ and as the name implies Hovis

was developed to provide practical services to the consumers. In order for robot to

be of practical use at home, it needs software that is capable of handling various

situations that can arise at home. Hovis Genie uses the same method as the smart

phones to receive software or Apps it requires to perform various tasks required by

the users. Apps or software will be developed and supplied by the engineers and

application developers using the Android platform. Dongbu Robot will supply the

Android robot with Android terminal installed and provide the software (API) and

the programming method to create robot service applications

(1) Hovis Lite

Before describing Hovis Genie in detail, brief description of Hovis Lite is required.

1.1 HOVIS Development Background

1.2 HOVIS Genie Features

01 Introducing Android Robot
Hovis Genie

CHAPTER 01 - Introducing Android Robot Hovis Genie

9

Hovis Lite is a humanoid robot with an 8bit controller using ATmega 128

microprocessor. Developed for robot education, Hovis Lite incorporates servo motors,

various sensors, and versatile body. 8bit controller mentioned above called DRC is

the brain of the robot. To control the DRC, motor, and various sensors, Hovis

Lite is supplied with software tool DR-Visual Logic. DR-Visual Logic is a graphic

development language with C language like features such as variable delcaration,

function implementation, and logic formation. Also, to faciliate in creating motion

for this complex16 axis robot, Hovis Lite is also supplied with motion develoment

tool DR-SIM as well. Hovis Genie is based on Hovis Lite with the major differences

being the Omni wheel replacing the legs, external casing, and addition of Android

terminal which is used to control the DRC and various attached sensors.

(2) Hovis Genie

Hovis Genie was developed to provide services at home. Variety of required services

can be performed by Genie by running service applications as an App using the

Android terminal.

Learning With HOVIS Genie/App Android Robot Programming

10

Hovis Genie can express facial emotions using the head touch sensor, flash, and

eye LEDs. Tact switches located at the palm of each hand can also be used to solicit

response as well. Omni wheels located at the base provides stability and ease of use

by allowing Genie to move in any direction without turning, facilitate automatic

charging, and makes it possible for Genie to be used for educational purposes.

Obstacle detection sensors located near the omni wheel enables Genie to avoid

obstacles while moving. Hovis Genie is available as a kit or preassembled unit. Just

like Hovis Lite, kit format is for educational purposeses where each owner would

learn to assemble and program the robot. Preassembled unit which could also be

used for educational purposes does not involve any assembly or programming and

comes ready to be used at home simply by running the installed Apps. Assembly

instructions for the kit format can be found at archives section of our website

dongburobot.com or downloaded from www.hovis.co.kr/guide .

Charging terminal

Charging station
receiver충전스테이

Charging terminal

CHAPTER 01 - Introducing Android Robot Hovis Genie

11

Hovis Genie is can be seen as union of two separate parts, robot body and the MID.

MID can be attached/detached from the robot and used as regular Android terminal

when detached from the robot.

(1) Robot Body

Body is composed of motors, brackets, sensors, IR receiver, and other hardware

covered by external shell. Charging stataion, power adapters, remote control, and

other accessories are included with the robot. Genie uses MID touch screen, speech

recognition, head touch sensor, palm tact switches, and sensors near the omni wheel to

receive input. Output is done through MID screen, voice, music, head LEDs, and motion

using motors. Combination of various input and output allows Genie to perform the

required services and also makes programming possible.

1.3 HOVIS Genie Hardware

Learning With HOVIS Genie/App Android Robot Programming

12

(3) Hovis Genie Specification

Hovis Genie is about as tall as an adult’s knee. Genie is capable of automatic charging

and Genie can also be manipulated by remote control using the camera through the

MID. Specifications as as follows.

Item Detailed Description

Robot

Model Name HOVIS Genie

Size 255(W) X 236.5(D) X 408.5(H)

Weight 3.4kg

Motor 11pcs

Sensor
 Obstacle detection sensor, cliff detection snsor, IR
sensor, touch sensor Tactile sensor, localization sensor.

Drivetrain Omni-directional Drive / HerkuleX 0102 3ea

Network IR Receiver, ZigBee[option]

External Speaker External 2 way stereo Speaker(1W 2Ch)

Battery Capacity 7.4V / 3,000mAh / Li-Po

MID

Display 3.5”TFT(480X320)

Screen Input Method Capacitive Full Touch

Main Processor MID : S5PC110, 1GHz

Camera Front Rear Camera

Audio 1ch MIC(MID internal)

Internal Memory 256MB

External Memory Micro SD 4G

Network Wi-Fi

Other Remote Control IR type / ZigBee Remocon[option]

 Robot Power Button

 Eye(LED)

 Ear(LED)

 Mouth(LED)

Genie will feel and react to head stroke or touch.

Genie will pause for certain period when head is

touched during the automous mode movement.

When Genie is being charged, color around the

 eyes will change according to the charge state.

Charge complete : Blue Charging : Red

(Red line will grow as Genie becomes charged)

Both ears are normally(autonomous/stop mode) lit with

white LEDs (does not blink).

LEDs will blink when in speech recognition mode.

1~3 white LEDs will blink when Genie talks or when

Genie’s emotion changes.

CHAPTER 01 - Introducing Android Robot Hovis Genie

13

From the development perspective, Hovis Genie has two distinguishing software

features. Firmware which go into the robot controller and the sensor controller board,

and the application software for developing MID appliations. Firmware is an AVR

program created using C language and MID application software is an Android program

created using Java. Dongbu Robot provides API for robot service through Android

engineers.

(1) MPSU (DRC-005T), OPSU (DRC-004TO), MID Side Board - Firmware

Above boards used for controlling robot motors and sensors are installed internally and

at the back of the robot. MPSU and OPSU receives main commands from the MID and

contain embedded firmware pograms. MPSU is also called DRC and it is identical to the

DRC found in Hovis Lite. After receiving commands from the MID, MPSU operates the

motor & head LEDs, MID Side Board, head touch sensor, and shoulder distance sensor.

OPSU located internally near the abdomen provides values to the floor detection

sensor, distance sensor, and charging station IR sensor. MID Side Board located on

the chest below the MID controls the speaker, MID charging, and MID and MPSU

communication level change. Both MPSU and OPSU contain ATmega128 microprocessor

and AVR programming is used to create the firmware. Hovis Lite includes DRC (MPSU)

programming method and instructions whereas modification of factory embedded

firmware is restricted on Hovis Genie since Genie’s main purpose is to implement

service through the MID.

1.4 HOVIS Genie Software

(2) MID - Android

MID is abbrivation of Multimedia Internet Device. MID by Dongbu Robot with Android

OS is able to take advantage of the Apps available in the Android market to download

new services. While MID is similar in many ways to the the standard Android terminal,

MID contains robot service program that is used to control Hovis Genie. MID is

comprised of system software (firmware) and application. Android OS which is based

on Linux forms the terminal firmware. While programming materials for the system

software will be released by Dongbu Robot at a later date, ultimate objective of Genie

software devlopment lies with Android MID applications. There are already hundres of

thousands of Android applications created using JAVA language available for download

in the Android market. In the same manner, Hovis Genie Android robot applications can

be developed and downloaded to the MID to provide robot services.

Learning With HOVIS Genie/App Android Robot Programming

14

Multimedia

Menu containing camera, gallery,

MP3 player, and recorder.

HOVIS App

Menu containing robot apps such as

morning info, remote control, home security,

and etc.

Education

Children’s educational menu containing

children’s story, song, poem, dailiy living

habits, and etc.

Running HOVIS Genie Application

When Hovis Genie MID is first turned on, Screen will go directly to Hovis related main

menu rather than standard Andoid terminal programs.

(1) Main Screen

When robot is first turned on, screen will first show picture of the robot heart with

sound and then move directly to the main screen. Main menu screen is comprised of

3 main menus at the top and shortcut buttons, home button, and robot soft button at

the bottom.

1.5

Main menu is comprised of Multimedia menu containing camera, gallery, and sound

related menus. Hovis App menu contains morning info, remote control, and other robot

service App menus. Education menu contains children’s stories, songs, poems, and

other education related menus. Multimedia menu is collection of standard multimedia

applications which are useful to the robot. Hovois App menu is collection of robot related

applications which can make robot peform various functions such as motion. LED,

touch, voice, and etc. Lastly, Hovis Genie was developed as home service robot and

children’s education is an important part of the service Genie is able to provide. There

are many children’s educational contents such as songs and stories which were created

using Flash or other Apps available to the children.

CHAPTER 01 - Introducing Android Robot Hovis Genie

15

Hovis Apps and educational content apps are available for download from the Dongbu

Robot MID App store as well as other applications and contents. Also, previously down-

loaded applications can be updated using the App store when update becomes available.

App store is currently not 100% open to the public but limited App store for Dongbu

robot is operational.

(2) Autonomous Operation

People tend to imagine about C-3PO or terminator robots seen in the movies when

thinkng about robots. Unfortunately or fortunately, such robots are not possible to build

with current state of our technology. The most widely used and practical robots in the

world today are industrial robots which are very good at performing repetitive tasks

with precision but these robots are more like factory automation equipment rather than

the robot that we imagine. Hovis Genie is a humanoid robot similar to C-3PO seen in

the Star Wars movies. Genie may not be as practical as the industrial robots but home

service Genie can provide greatly increases the practical aspect of Genie comapred to

the previous generation service robots. One of the most sought-after function for the

robot developers world wide is the development of fully independent robot such as

C-3PO seen in the movie which is able to operate fully independently without human

instruction or intervention but such a robot does not exist today. Robots such as Genie

can respond to external inputs from various sensors accoring to the preprogrammed

response but autonomous operation of the robots today are still very limited.

90° Auto rotation

180° Auto rotation in outward
direction

L/R 90° Auto rotation

14 ° Bend (forward/backward)

Can be clicked manually

L/R & F/B 360 ° rotation,
autonomous movement

90° Bend inward direction

For inserting small stick or a flag.

Shoulder

Arm

Neck

Waist

Hand tactilr dwitch

Foot(Wheel)

Elbow

Palm Hole

Learning With HOVIS Genie/App Android Robot Programming

16

Response to head touch

 1 Genie will act pleased when touched softly on the head

 2 Genie will show displeasure when hit on the head.

Response to an obstacle

When Genie meets an obstacle during movement, Genie will turn and change direction.

Action by time

 1 In the morning, Genie will ask about today’s weather and say “have a nice day”.

 2 At lunch time, Genie will say “it’s time for lunch” and ask if you have had lunch yet.

 3 In the evening, Genie will ask how today’s weather was and also ask what you did today.

 At 9PM, Genie will say “it’s time for bed”, and at 10PM, Genie will say “let’s get ready for bed”
 and show motion simulating brushing teeth or washing face.

Response to click on the palm tactile switch

 1 Left hand click - Genie will say ‘Hi’ and greet you or kiss you to show affection.

 2 Right hand click - Genie will simulate motion looking at the wrist watch and tell the
 time and today’s date.

 3 Both hands click - Place light bouncy ball betewen Genie’s hands and Genie will lift the
 ball above it’s head and throw the ball.

Response to hunger

Genie will begin automatic recharging when battery level falls below 20%.

Autonomous Operation

Being bored, expressing love, playing cute, asking time, playing alone, stretching, scratching

head, exercising, conducting, and other actions and voice expressions.

When Genie meets an obstacle, lower front distance sensor responds and when Genie

is touched on the head, head touch sensor responds. Genie will move towards the

charging station when the battery level falls. Genie can also be made to act out diffrent

motion patterns at specified times or made to dance. Autonomous operation will depend

on how detailed the programmer is able to program Genie.

1

2

3

4

5

6

CHAPTER 01 - Introducing Android Robot Hovis Genie

17

Robot speed

Flash

Obstacle or cliff detection

Bend waist backward

Bend waist forward

Right turn

Left turn

Hovis Genie can also be controlled remotely through the camera located at front of the

MID. User must first install Hovis Genie control application on the smart phone and then

login using registered ID and password to connect to Hovis Genie MID through the remote

server. MID screen will show ‘under remote control’ once the connection is made. Hovis

Genie movement can now be controlled using the movement related UI in the smart phone

or robot motion saved in the MID can be run from remote location. Control application also

has texting feature which can be used to send txt message to the MID to be read out aloud

by Genie using TTS. Unlike other applications, remote control application requires two

applications to work. Receiver application in the MID and the control application installed

in the smart phone. Most of the currently existing applications are installed in the MID

and must be programmed to connect to the robot system. However, control application

installed in the smart phone can be developed in similar manner to other Android Apps.

This allows application developers or enigneers to develope their own custom Apps to be

installed in the smart phones to provide diverse remote control services such as motion

control with music or voice output or robot movement control using the smart phone gyro

sensor, and other services not found in the App provided by the manufacturer.

(3) Remote Control

Remote control is one of the most poluplar method of robot control. Vacuum cleaner

with camera can be used to monitor the home or be controlled from remote location or

Mars exploration robots can be made to explore planet Mars through remote control.

NASA Mars Rover Opportunity robot explorer sent to Mars in 2004 operated on Mars for

7 years using the camera on board the robot to send video data to Earth and receving

instructions back from Earth. As radio signal travels at same speed as the speed of

light, instructions sent to Mars took 4 minutes and 27 seconds to arrive. However,

regardless whether the robot is a home vacuum cleaner or Mars explorer, basic method

of remote control using the camera is identical.

Learning With HOVIS Genie/App Android Robot Programming

18

4

6

3

5

알람메인 날씨 일정

[Morning Info Content]

(4) Adapting Contents for Robot Service

Robot can be thought of as moving terminal. Our ultimate goal is to create an ecosystem

where users will be able to pick and choose desired robot applications for their use from

many different available applications. The best way of achieving this goal would be to adapt

hundres of thousands of available Android Apps for use by the robot. Good example of this

type of adaptation would be Genie’s Morning Info application where existing smart phone

Apps alarm, schedule, and weather are integrated with the robot motion to create an

application adapted for robot use. Another good example of adapation for robot use would

be children’s stories or songs which are readily available. Simply adding robot motion to

the existing story or song app would turn regular song or story into an interesting 3-D

content which children would find much more interesting. The difference between regular

Android content and robot content could be as simple as an addition of motion but the

end result of such integration could result in much more interesting and useful product for

the users. With participation of App developers and engineers we can expect to find many

more interesting and useful applications to become available in the future.

CHAPTER 01 - Introducing Android Robot Hovis Genie

19

(5) Purpose & Application of Provided Software

By inclduing Android Geinie API, examples and educational material for each module with

Hovi Genie, Dongbu Robot wish to provide an environment for Hovis Genie application

development. While Hovis Genie was developed with home service in mind, our objective

is also to provide support to the application developers and engineers to develope new

applications and to adapt and existing Android applications for use with Hovis Genie. Hovis

Genie robot service software can be divided into three types of software; autonomous

operation, remote control, and information processing. Sample of each type of software

will be supplied by Dongbu Robot for use as an example to develope new applications.

[Children’s story, song contents]

Learning With HOVIS Genie/App Android Robot Programming

20

02 Creating Development
Environment or Android & Robot

This chapter will describe creating development environment for Android & Robot.

Develpment environment for Android & Robot is divided into 4 following stages.

- JDK Installation

- Android SDK installation

- Eclipse installation and setup

- MID development board connection and debugging

JDK(Java Developmenet Kit) is a Java development tool. As Android is based on

Java, Java development tool is necessary, JDK has to be installed first as it affects

the development enviornment.

 01
Go to the Java site and click Java Download icon.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

2.1 JDK Installation

CHAPTER - 02 Creating Development Environment or Android & Robot

21

 02
From the Java SE Development Kit section, accept the license agreement and download the JDK

matching your OS.

 03

Run the downloaded installation file to install JDK.

Learning With HOVIS Genie/App Android Robot Programming

22

 05
Install JRE(Java Runtime Environment)

 04
Select JDK install location(Default destination is recommended. Do not select path with Korean

language)

CHAPTER - 02 Creating Development Environment or Android & Robot

23

 06
Installation complete

(JavaFX SDK does not have to be installed in the future)

 07
Control panel > system > Advanced > Click Environment variables(N)

Learning With HOVIS Genie/App Android Robot Programming

24

 08
Add path selected in step 4, except here C:\Program Files\Java\jdk1.7.0_05\

2.2 Android SDK Installation

Android SDK(Software Development Kit) is collection of libraries required for

developing Android based applications. Android SDK can be downloaded from the

official Android developers site http://developer.android.com/. Official Android

developers site http://developer.android.com/ contains latest information, tutorials

for beginners, API(Application Programing Interface) instructions and other

inormation. As this manual is mainly concerned with Android robot programming,

it is highly recommended for the user to visit the official Adroid developers site

often for additional information regarding Android development.

CHAPTER - 02 Creating Development Environment or Android & Robot

25

 01
Go to Android developers site and download SDK

(http://developer.android.com/sdk/index.html)

 02
Run downloaded SDK installation file and click Next.

Starting Android SDK. Refer to Android developers site and install the SDK

following the instaructions below.

Learning With HOVIS Genie/App Android Robot Programming

26

 04
Select user option and click Next

 03
Installation will look for installed JDK. Click Next if JDK has been installed.

(Install JDK if it has not been installed)

CHAPTER - 02 Creating Development Environment or Android & Robot

27

 05
Choose install location for Android SDK and click Next

(Default location recommended. Do not select path with Koreanlanguage)

 06
Choose start menu folder and then click Next

Learning With HOVIS Genie/App Android Robot Programming

28

 07
Click Next after installation is complete

 08
Click Finish to run SDK Manager

CHAPTER - 02 Creating Development Environment or Android & Robot

29

 09
Default selections are checked when SDK manager is run. Hovis Genie App develpment uses Android 2.3.3

(API 10). Check Android 2.3.3 and click Install.

 10
Accept license agreement and click install.(Installation takes about 1~3 hrs)

Learning With HOVIS Genie/App Android Robot Programming

30

 01
Go to Eclipse site and select Eclipse IDE for Java EE Developers for your OS.

(http://www.eclipse.org/downloads/)

* Download Eclipse 3.6.2(Helios) or later version

There are many tool available for Android development and one of the most

popular and well known tool is Eclipse which is used by the majority if not most

of Android developers . Eclipse is an open source based integrated development

environment providing comprehensive set of tools to simplify coding, debugging,

and execution. Installing Eclipse is slighty different from installing other software.

Like installing other Java based open source project software, downloaded file has to

be decompressed to complete the installation. After Eclipse installation is complete,

ADT Plugin has to be installed to add Android development support to Eclipse. ADT

(Android Development Tools) are set of tools for developing Android applications

quickly and easily.

2.3 Eclipse Installation & Setup

ADB (Android Debug Bridge) is a versatile command line tool that lets you

communicate with an emulator instance or connected Android-powered device.

 11
After installation is complete, click Yes to restart ADB and close SDK manager.

CHAPTER - 02 Creating Development Environment or Android & Robot

31

 02
Select mirror site to download Eclipse

 03
Decompres downloaded Eclipse (example C:\dongburobot\eclipse\)

Warning : Do not decompress to path with Korean language.

Learning With HOVIS Genie/App Android Robot Programming

32

 04
Create short cut icon on the desk top and run Eclipse.

 05
Select Workspace and click OK.(Workspace refers to space for editing and saving source

codes. Sample C:\dongburobot\workspace\)

 06
Freom Eclipse select Help > Install New Softwar.

CHAPTER - 02 Creating Development Environment or Android & Robot

33

 07
Click Add and add the following to the Add Repository window.

Name : Android

Location : http://dl-ssl.google.com/android/eclipse/

 08
Following screen will appear when Rpository added in step 7 is selected. Select All and then

click Next.

Learning With HOVIS Genie/App Android Robot Programming

34

 09
Check Eclipse Plugin list and click Next.

 10
Accept license agreement and click Finish to start installation.

CHAPTER - 02 Creating Development Environment or Android & Robot

35

 11
Following security warning may appear during installation. Click OK to continue.

 12
Restart Eclipse after completing Plugin installation.

 13
From Eclispse, run Window > Preferences and set SDK location in Android tab. SDK Location is the

SDK installation path set in 2.2. Clip Apply button and then click OK to finish setup.

Learning With HOVIS Genie/App Android Robot Programming

36

03 Android Robot (Genie)
Programming

Development environment for Andriod programming was set up in Chapter 2. In this chapter,

we will start creating actual Android based program.

Objective of this chapter is to create actual Android App that will work in the Android platform.
In order to accomplish our objective, understanding of Android is required. We will learn
the basic structure and features of Android while working our first App. However, due
to the complexity of Android programming which is beyond the scope of this manual, we

recommend you visit Android developers site (http://developer.android.com/index.html)

frequently for extra information. Even though this manual cannot cover the whole of Andorid

programming, examples provided will help you to understand the basic concepts invovled in

working with Android.

 01
Run Eclipse, select File>New>Android Application Project.

3.1 Hello Genie Project Creation

37

CHAPTER - 03 Android Robot(Genie) Programming

 03
Select launch icon. Launch icon is a square icon representing the App in the smart phone.

Click Next.

 02
Set App, project and package name. Build SDK must be set to Android 2.3.3 (API 10) since MID

installed in Hovis Geine has Android version 2.3.3. Click Next after all names have been set.

Learning With HOVIS Genie/App Android Robot Programming

38

 05
Select name for the created BlankActivity. Default name will be used. Click Finish to complete

new project creation.

 04
Create Activity. Activity refers to a single screen in the smart phone. For example, if you receive a call while

you are in the midst of sending a txt message and the screen switches to the phone, one activity has been

switched to another activity. We will discuss the Activity more in detail later.Select BlankActivity and click Next.

(MasterDetailFlow is a newly added function for use in Tablet and will not be dealt with in this manual.)

39

CHAPTER - 03 Android Robot(Genie) Programming

 01

USe USB jack to connect MID to PC

We will now run HelloGenie project. There are two ways to run the HelloGenie

project created by Eclispse. Project could be run in the emulator or in the actual

Andirod equpment. We will use the actual Android equipment MID to run the

project.

3.2 Running Hello Genie Project

Learning With HOVIS Genie/App Android Robot Programming

40

 03
Press from the Eclipse tool bar to run the project and check the MID screen,

[TIP] If MID can not be found?

[Settings > Applications > Developer > USB debugging] Cancel USB debuggin and check again.

[TIP] If App does not run?

App will not run if xml source code is selected when button is clicked. In this case, *.xml.out file

will be created. Delete this file and open any java file in /src and press the run button.

[TIP] If following error message appears?

Parser exception for /HelloGenie/ AndroidManifest.xml: In the text, markup follwoing the root

element must be in correct format. It looks to be ADT Plugin bug. Refer to the source codes in the

next section and edit the codes.

 02
Use Eclipse DDMS to check the connection and to select the equipment.

41

CHAPTER - 03 Android Robot(Genie) Programming

We created and ran our first Android App HelloGenie in the actual Android

equipment MID. We will now check the HelloGenie project files. Basic structure of

HelloGenie can be found in the Eclispse Package Explorer window.

/res/menu

Directory containing xml file defining the screen shown when menu button is pressed in the Andriod smart

phone.

/res/values

Directory containing xml files designating other resources (text string or style).

AndroidManifest.xml

This file defines the project component structure and basic properties.

Each project has one AndroidMnaifest.xml file.

/src

Directory containing App source. Currently,

MainActivity selected when creating the project is

included as default.

/gen

Files in this directory are created automatically. Files

contain data related to resounce and environment.

/bin

Directory containing files that were created during

project build.

/libs

Directory containing external libraries that is included

in the project. In the future, this directory will be used

to include the libaries providing robot services.

/res

Directory containing project resources.

/res/drawable

Directory containing project image files.

/res/layout

Directory containing files defining screen UI(User

Interface). One Activity represents one screen.One

Activity will use one xml file contained in this directory.

3.3 Hello Genie Project Basic Structure

HelloGenie project structure contains many directories. Among the directories,

understanding of /src, /res, and AndroidManifest.xml file is required to understand

App operation.

Learning With HOVIS Genie/App Android Robot Programming

42

(1) AndroidManifest.xml

Looking at AndroidManifest.xml file first. Each App includes single AndroidMaifest.

xml file. AndroidManifest.xml file defines App component structure, App rights and

properties. In other words, this file contains essential information about the App.

AndroidManifest.xml file is shown below.

Listing1. AndroidManifest.xml

 1: <manifest xmlns:android=”http://schemas.android.com/apk/res/android”

 2: package=”com.dongburobot.hellogenie”

 3: android:versionCode=”1”

 4: android:versionName=”1.0” >;

 5:

 6: <uses-sdk

 7: android:minSdkVersion=”10”

 8: android:targetSdkVersion=”10” />;

 9:

 10: <application

 11: android:icon=”@drawable/ic_launcher”

 12: android:label=”@string/app_name”

 13: android:theme=”@style/AppTheme” >;

 14: <activity

 15: android:name=”.MainActivity”

 16: android:label=”@string/title_activity_main” >;

 17: <intent-filter>

 18: <action android:name=”android.intent.action.MAIN” />

 19: <category android:name=”android.intent.category.LAUNCHER” />

 20: </intent-filter>

 21: </activity>

 22: </application>

 23:

 24: </manifest>

<manifest> tag is the higest tag of the AndroidManifest.xml file. This tag contains the

basic information about the App. Package in the 2nd line contains the package name

for the application. Lines 3~4, android:versionCode, android:versionName is for the

version number and name of the App. Thes two properties can change when APP is

upgraded.

43

CHAPTER - 03 Android Robot(Genie) Programming

 <uses-sdk> and <application> tags are found below <manifest> tag. <uses-sdk> tag

designates operational environment of the App. android:minSdkVersion in 7th line

designates minimum Android version App can operate in. android:targetSdkVersion

in 8th line designates the API level of the App. Set this line to API Level 10 which

is for the Android 2.3.3 Gingerbread version. MID installed in the robot contains

Android version 2.3.3.

<application> tag declares App components. Android has four core App components;

Activity, Service, Broadcast receiver, and Content Provider (Refe to the website for

detailed information on components). Since current HelloGenie project is composed

on only one Activity, AdroidManifest.xml inlcudes one <activity> tag.

android:icon in the 11th line within <application> tag selects icons to show in the

Android terminal. Depending on the resolution of the Android terminal, porperty value

“@drawable/ic_launcher” refers to the image file ic_launcher in /res/drawable-hdpi/,

… , /res/drawable-mdpi directory. (@ is a keyword that refers to existing resource).

android:label in 12th line designates name of the App, property value “@string/app_

name” refers to app_name text string designated in /res/values/strings.xml. 13 th line

designates the App style. “@style/AppTheme” referst to the App Theme designated in

/res/values/styles.xml.

Lines 14~21 decalres Activity contained in the project. android:name in line 15

designates the name of the class that implements the Activity. Name of the class for

this Activity is com.dongburobot.hellogenie.MainActivity but since package name

designated in the <manifest> tag can be skipped, value can be set to MainActivity.

16th line designates external name for the Activity.

Learning With HOVIS Genie/App Android Robot Programming

44

Lines 17~20 contains <intent-filter>. Intent filter specifies the types of intents

Activity can respond to. Intent here refers to an object that contains necessary

information to operate one of the core components. Intent is used to operate single

or multiple core components. To be more specific, when HelloGeine App is run

from the launcher (home screen), android.intent.action.MAIN Action and android.

intent.category.LAUNCHER with Category property intent are sent to HelloGenie.

Received intent will run the .MainActivity which has 2 filter properties.

AndroidManifest.xml file is an important file defining App component structure.

Each App always includes one AndroidManifest.xml file. Looking at the HelloGenie

App through the AndroidManifest.xml, <uses-sdk> tag shows that App runs in

Android 2.3.3, and <application> tag shows one Activity is included. <activity>

MainActivity is activated when intent which is generated when user clicks an icon

from the launcher (home screen) is received by the intent filter.

(2) MainActivity.java and activity_main.xml

One Activity refers to one screen. User use the screen (Activity) to interact with the

smart phone. In other words, since singe App is composed of multiple screens, it

could be thought of as loose collection of multiple Activity.

When user runs an App, there is a sigle main Activity that is presented first.

This Activity defined in the AndroidManifest.xml is MainActivity in our HelloGenie

project.

To interact with the user, MainActivity contains activity_main.xml and MainActivity.

java, We will examine the MainActivity.java file first.

 1: package com.dongburobot.hellogenie;

 2:

 3: import android.os.Bundle;

 4: import android.app.Activity;

 5: import android.view.Menu;

 6:

45

CHAPTER - 03 Android Robot(Genie) Programming

Listing2. MainActivity.java

 7: public class MainActivity extends Activity {

 8:

 9: @Override

 10: public void onCreate(Bundle savedInstanceState) {

 11: super.onCreate(savedInstanceState);

 12: setContentView(R.layout.activity_main);

 13: }

 14:

 15: @Override

 16: public boolean onCreateOptionsMenu(Menu menu) {

 17: getMenuInflater().inflate(R.menu.activity_main, menu);

 18: return true;

 19: }

 20: }

All android Activity are created by inheriting android.app.Acitivity class. Our

MainActivity class was also created by inheriting Activitiy class. When Activity class

is inherited, many methods can be overridden depending on the Activity lifecycle.

For your reference, Activity lifecycle is very important and must be understood

properly. Refer to http://developer.android.com/guide/components/activities.html

for more information. Lifecyclye will be discussed more in detail at later stage.

onCreate() method in 10th line is the first method to be executed when MainActivity

is first generated. Following line is in the 12th line of onCreate().

 setContentView(R.layout.activity_main);

setContentView() in this line assigns user interface defined in the activity_main.

xml to the MainActivity. R.Layout.activity_main in setContentView() refers to res/

layout/activity_main.xml.

Learning With HOVIS Genie/App Android Robot Programming

46

activity_main.xml is composed of RelativeLayout

and lower element TextView. Relative

Layout is a layout that places multiple views

relative to each other. TextView is a view that

ouputs text to the screen. Picture on the left shows

the actual user interface defined in the Activitiy_

main.xml. XML layout file will be discussed more

in detail later. Refer to http://developer.android.

com/guide/topics/ui/declaring-layout.html for

more information.

Listing3. activity_main.xml

 1: <RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 2: xmlns:tools=”http://schemas.android.com/tools”

 3: android:layout_width=”match_parent”

 4: android:layout_height=”match_parent” >

 5:

 6: <TextView

 7: android:layout_width=”wrap_content”

 8: android:layout_height=”wrap_content”

 9: android:layout_centerHorizontal=”true”

 10: android:layout_centerVertical=”true”

 11: android:text=”@string/hello_world” />

 12: </RelativeLayout>

04 Starting HOVIS Genie
Robot Programming

We created Android programming environment in Chapter 2. In Chapter 3, we learned about

the Android project structure while creating and and running our first Android App. In this

chapter, we will take our first step in programming Hovis Genie .

[Diagram 4-1] Hovis Genie S/W

Understanding of the Hovis Genie S/W structure is required before starting Hovis

Genie programming. Through the understanding of robot operation and by using

the available services, it becomes possible to develope robot Apps. [Diagram 4-1]

shows the overall structure of Hovis Genie S/W within the Android system.

Apps Remote control, morning info, dailiy living
habits, home security mode....

UI Manager
[Basic UI + Robot registration + setup + download..]

MPSU BD / OPSU BD / HEAD BD..

HOVIS
Launcher

H/W

Robot
Manager

Robot Scheduler

Percelve Dellberate Behavlor

JNI

AIDL

Service : Navigate [movement & auto charging],
 HRI[Speech recognition, TTS],
 Network, Player [motion,media,...]

Learning With HOVIS Genie/App Android Robot Programming

48

Robot Manager cannot be seen as it runs internally within the system but it contains

Robot Scheduler and service which plays an important part of robot operation.

Robot Scheduler is responsible for taking care of robot events and depending on the

robot status, autonomous mode, charging mode, and other modes, robot scheduler

decides and executes couse of action. Service abstracts robot sensors, motors, and

other hardware and provides robot service so that they can be easily used.

Service also provides API (Application Programing Interface) so that robot App we

create can easily control the robot.Hovis Launcher (home screen) and robot App

above the Robot Manager uses the Robot Manger service to execute robot related

tasks.

[Diagram 4-2] Hovis Launcher and Robot App

Hovis Genie S/W structure within the Android system can be divided into applica-

tion programs Apps, Hovis Launcher, and Robot Manager. Among the 3, upper

level application programs Apps and Hovis Launcher refers to robot Apps and home

screen and can be easily recognized as shown in [Diagram 4-2].

49

CHAPTER 04 - Starting HOVIS Genie Robot Programming

As shown in [Diagram 4-3] Service runs under the name GenieControlService in

the Android. GenieControlService [Diagram 4-1] forms the Robot Manager level

and includes Robot Scheduler and Service. GenieControlService which includes im-

portant modules is required for robot control and always runs in the background

during robot operation. GenieControlService is able to restore itself when problem

occurs due to unexpected system error. To summarize, GenieControlService is re-

quired to access robot H/W from the App. In this chapter, we will look at the ways

in which App we create accesses the robot service GenieControlService. Correct

understanding of this chapter is required as example used in this chapter leads to

robot programming using the Service in Chapter 5.

[Diagram 4-3] Robot Manager level service is GenieControlService

4.1 GenieApiDemo Project Creation

New project will be created for the example in ths chapter. From Eclipse, run the

following window File > New > Android Application Project and enter the following

to creat new project. (Refer to Chapter 3)

Learning With HOVIS Genie/App Android Robot Programming

50

 02

Add GenieApiDemoApplication.java.

- Application Name : GenieApiDemo

- Project Name : GenieApiDemo

- Package Name : com.dongburobot.genieapidemo

- Build SDK : Android 2.3.3 (API 10)

- Minimum Required SDK : API 10: Android 2.3.3 (Gingerbread)

After GenieApiDemo project is created, add GenieApiDemoApplication.java and

BaseActivity.java. Also, to use GenieControlService, add HovisService.jar to the

libs folder.

 01
Right click from src/com.dongburobot.genieapi and then click New > Class

51

CHAPTER 04 - Starting HOVIS Genie Robot Programming

 03
Add BaseActivity.java using same method.

Learning With HOVIS Genie/App Android Robot Programming

52

 04
Drag and add HovisService.jar file to libs folder. HovisService.jar can be downloaded from

Dongbu Robot website.

(http://www.dongburobot.com/jsp/cms/view.jsp?code=100122)

HovisService.jar file in libs folder is a collection of robot related API declarations contained in

GenieControlService distributed as single file. Make sure to include this file, otherwise project

will not be built properly.

※Warning - Method for adding HovisService.jar maybe different depending on the version

of the ADT(Android Development Tools) installed in Eclipse. Latest version of Eclipse and ADT

Plugin is recommended.

53

CHAPTER 04 - Starting HOVIS Genie Robot Programming

GenieApiDemoApplication class is created by inheriting Application class. Application

class is a class defined in android.app.Application class that expresses Android App

as abstraction. Application class is used when overall state needs to be maintained

while the App is running. In other words, it is useful for delcaring global variable

which can be used for the whole App . Function of GenieApiDemoApplication in

our GenieApiDemo project is to declare global global variable to bind the service

(HovisGenieServic) provided by GenieControlService so that service can be used

while the App is running.

GenieApiDemoApplication class source code is as follows.

4.2 GenieApiDemoApplication Class

 1: package com.dongburobot.genieapidemo;

 2:

 3: import android.app.ActivityManager;

 4: import android.app.ActivityManager.RunningServiceInfo;

 5: import android.app.Application;

 6: import android.content.ComponentName;

 7: import android.content.Intent;

 8: import android.content.ServiceConnection;

 9: import android.os.IBinder;

 10: import android.util.Log;

 11:

 12: import com.dongburobot.HovisGenieServiceInterfaces.IHovisGenieService;

 13:

 14: public class GenieApiDemoApplication extends Application {

 15:

 16: // HovisGenieService service binding

 17: public IHovisGenieService mBinder = null;

 18:

 19: private boolean mIsBinded;

 20: private Intent mIntent;

Learning With HOVIS Genie/App Android Robot Programming

54

 21:

 22: public ServiceConnection mConnection = new ServiceConnection() {

 23:

 24: public void onServiceConnected(ComponentName name, IBinder service) {

 25: mBinder = IHovisGenieService.Stub.asInterface(service);

 26: }

 27:

 28: public void onServiceDisconnected(ComponentName name) {

 29: mBinder = null;

 30: }

 31: };

 32:

 33: protected boolean isServiceRunning() {

 34: ActivityManager manager = (ActivityManager)getSystemService(ACTIVITY_SERVICE);

 35:

 36: for (RunningServiceInfo serviceInfo: manager.getRunningServices(Integer.MAX_VALUE)) {

 37: if (serviceInfo.service.getClassNam e().equals(“com.dongburobot.geniecontrol.HovisGenieService”)) {

 38: return true;

 39: }

 40: }

 40: }

 41: return false;

 42:

 43: }

 44:

 45: protected boolean connectService() {

 46: if (isServiceRunning()) {

 47: mIntent = new Intent(IHovisGenieService.class.getName());

 48: mIsBinded = bindService(mIntent, mConnection, BIND_AUTO_CREATE);

 49: return mIsBinded;

 50: }

 51:

 52: return false;

 53: }

 54:

 55: protected void disconnectService() {

 56: if (mIsBinded) {

55

CHAPTER 04 - Starting HOVIS Genie Robot Programming

[Listing. 4-1] GenieApiDemoApplication.java

 57: if (mConnection != null) {

 58: unbindService(mConnection);

 59: mConnection = null;

 60: }

 61: }

 62:

 63: mIntent = null;

 64: }

 65:

 66: // Application Binding

 “GenieControlService” when a robot app starts and finishes.

 67: @Override

 68: public void onCreate() {

 69: super.onCreate();

 70:

 71: if (!connectService())

 72: Log.i(“service”, “not connected”);

 73: }

 74:

 75: @Override

 76: public void onTerminate() {

 77: super.onTerminate();

 78:

 79: disconnectService();

 80: }

 81: }

We will begin creating GenieApiDemoApplication class.

Open the GenieApiDemoApplication.java file and edit the file so that GenieApiDemo

Application class will inherit Application class.

public class GenieApiDemoApplication extends Application { … }

When ‘extends Application’ is added, red underline will be added to GenieApiDemo

Application. Presssing Ctrl+Shift+O from above the underline at this point will

automatically add the required package and method to be Overridden.

Learning With HOVIS Genie/App Android Robot Programming

56

connectService() and disconnectService() connects and disconnects service. Declare

service interface objects before defining these methods.

Methods to be redefined are onCreate() and onTerminate(). onCreate() is the first

method to be called when App is executed. Method connect Service() will be added

since it connects the HovisGenieService provided by GenieContorlService when

GenieApiDemo App starts to execute. onTerminate() is called when App completes

execution. disconnectService() method is addes since service will be disconnected

when App completes execution.

 TIP. Press ‘Ctrl+Shift+O’ to add package not added from Eclipse.

 Additionally, ‘Ctrl+Space’ is the function key for automatic code completion

during code writing.

…

import android.app.Application;

…

public class GenieApiDemoApplication extends Application {

…

@Override

 public void onCreate() {

 super.onCreate();

 a

 if (!connectService())

 Log.i(“service”, “not connected”);

 }

 @Override

 public void onTerminate() {

 super.onTerminate();

 disconnectService();

 }

}

57

CHAPTER 04 - Starting HOVIS Genie Robot Programming

mBinder is an important IHovisGenieService object since all robot service will

performed through mBinder. IHovisGenieService class is an interface for accessing

the service HovisGenieService which is a service within GenieControlService.

IHovisGenieService is defined in Hovis Service.jar. Namespace of the

IHovisGenieService class package defined in HovisService.jar file is com.

dongburobot.HovisGenieServiceInterfaces.IHovisGenieService which needs to be

imported to use IHovisGenieService.

IHovisGenieService is created using AIDL(Android Interface Definition Language)

and it is in charge of IPC(Inter Process Communication). Since we will be

focusing on using the robot service using service binding, IPC and IDL will not

be discussed. Refer to Andoid developer website for information concerning IPC

related AIDL.

- http://developer.android.com/guide/components/aidl.html

Refer to [Listing. 4-1] and add connectService(), disconnectService(), and

isServiceRunning(). Variables and objects in line19~20 should be added as well.

Since GenieApiDemoApplication class was created by inheriting basic Android

Application class, this has to be noted in the AndroidManifest.xml. Add the

following to the 11th line. android:name=”GenieApiDemoApplication”

import com.dongburobot.HovisGenieServiceInterfaces.IHovisGenieService;

public class GenieApiDemoApplication extends Application {

public IHovisGenieService mBinder = null; // Service interface object

…

 …

 …

}

Learning With HOVIS Genie/App Android Robot Programming

58

[Listing 4-2] AndroidManifest.xml

Our App and the robot service become connected when the App is first executed. When

the App starts, onCreate() in GenieApiDemoApplication is called and connectService()

is called within onCreate() to create service binding. Robot service connected by

connectService() will remain connected until the App ends.

isServiceRunning() is used within connectService() to check if the service is operating

in the backround and binds to robot service through bindService(). True or false is

returned depending on the result of the binding.

(1) Robot Service Connection

 1: <manifest xmlns:android=”http://schemas.android.com/apk/res/android”

 2: package=”com.dongburobot.genieapidemo”

 3: android:versionCode=”1”

 4: android:versionName=”1.0” >

 5:

 6: <uses-sdk

 7: android:minSdkVersion=”10”

 8: android:targetSdkVersion=”10” />

 9:

 10: <application

 11: android:name=”.GenieApiDemoApplication”

 12: android:icon=”@drawable/ic_launcher”

 13: android:label=”@string/appa_name”

 14: android:theme=”@style/AppTheme” >

 15: <activity

 16: android:name=”.MainActivity”

 17: android:label=”@string/title_activity_main” >

 18: <intent-filter>

 19: <action android:name=”android.intent.action.MAIN” />

 20: <category android:name=”android.intent.category.LAUNCHER” />

 21: </intent-filter>

 22: </activity>

 23: </application>

 24:

 25: </manifest>

59

CHAPTER 04 - Starting HOVIS Genie Robot Programming

When connectService() is executed, isServiceRunning() in line 33 is called to check if

the robot service (GenieServiceControl) is running in the MID. isServiceRunning() will

return true if the robot service is running in the background and return false otherwise.

If the robot service is running in the background, bindService() is called to actually bind

to the robot service. binsService() is defined in the android.content, and the original

format is as follows

@Override

public void onCreate() {

 super.onCreate();

 if (!connectService())

 Log.i(“service”, “not connected”);

}

protected boolean connectService() {

 if (isServiceRunning()) {

 mIntent = new Intent(IHovisGenieService.class.getName());

 mIsBinded = bindService(mIntent, mConnection, BIND_AUTO_CREATE);

 return mIsBinded;

 }

 return false;

 }

}

public abstract boolean bindService(Intent service, ServiceConnection conn, int flags)

Learning With HOVIS Genie/App Android Robot Programming

60

Intent is the first argument of bindService(). Intent is an object that one App component

sends to run another App component. Intent sent by our App to GenieControlService

through bindService() is same as sending a message stating robot services provided by

GenieControlService will be used. Intent is defined as followin in connectService().

Argument IHovisGenieService.class.getName() returns robot service interface class

name com.dongburobot.HovisGenieServiceInterfaces.IHovisGenieService to the Intent

constructor. Also, Intent object having this class name is assigned to the mIntent.The

reason mIntent has robot interface class name is due to the fact intent filter defined in

the robot service is as follows

2nd argument of the bindService() is a ServiceConnection class object that receives

information about the service when the service starts or ends. ServiceConnection object

mConnection is declared in lines 22~31.

mIntent = new Intent(IHovisGenieService.class.getName());

<intent-filter>

<action android:name=”com.dongburobot.HovisGenieServiceInterfaces.IHovisGenieService”/>

</intent-filter>

GenieContorlService의 AndroidManifest.xml 중에서.

Return Value

True if service binding succeeds and false otherwise.

 mIsBinded = bindService(mIntent, mConnection, BIND_AUTO_CREATE);

service
Defines the subject of the service connection. Intent will designate component
name matching the intent filter defined in th service.

conn Designates object to receive information when service starts or ends.

flags
Service binding option, BIND_AUTO_CREATE, BIND_DEBUG_UNBIND, BIND_
NOT_FOREGROUND, BIND_ABOVE_CLIENT, BIND_ALLOW_OOM_MANAGE-
MENT, or BIND_WAIVE_PRIORITY.

Parameter

61

CHAPTER 04 - Starting HOVIS Genie Robot Programming

onServiceConnected() is called back (method is called automatically by the system)when

service binding is complete and service interface connected to mBinder is assigned.

In contrast, onServiceDisconnected() is called back when the service is disconnected

and mBinder is set to null as service is no longer valid. In other words, mConnection

manages mBinder depending on the robot service connection status.

Last or 3rd argument of bindService() is service binding option. BIND_AUTO_CREATE

creates service automatically as long as binding is valid. There are other options

available bu they are rarely used. When bindService() is called, depending on the service

connection status and two redefined methods in defined ServiceConnection class object

mConnection it is assigned as interface to IHovisGenieService object mBinder. When

connectService() is all completed, App is ready to use the service.

public ServiceConnection mConnection = new ServiceConnection() {

 public void onServiceConnected(ComponentName name, IBinder service) {

 mBinder = IHovisGenieService.Stub.asInterface(service);

 }

 public void onServiceDisconnected(ComponentName name) {

 mBinder = null;

 }

 };

Service cancellation is done by calling disconnectService()calling within onTerminate() in

GenieApiDemoApplication class. onTerminate() is called automatically when App ends.

Service ends together with App.

(2) Robot Service Cancellation

@Override

public void onTerminate() {

 super.onTerminate();

 disconnectService();

}

Learning With HOVIS Genie/App Android Robot Programming

62

When disconnectService() is called, service bind state is checked through mIsBinded. If the

service is in bound state mConnection is checked to see if it is null and unbindService() is

called. unbindService orginal form is as follows.

unbindService() cancels the connected service. unbindService() argument is

ServiceConnection object which was used as 2nd argument of bindService() during

service connection.

When unbindService() is called, service connection is cancelled and at the same time

redefined onServiceDisconnected() is called to mConnection sent to the argument. Also,

mBinder is set to null to complete the service connection cancellation.

public abstract void unbindService(ServiceConnection conn)

unbindService(mConnection);

protected void disconnectService() {

 if (mIsBinded) {

 if (mConnection != null) {

 unbindService(mConnection);

 mConnection = null;

 }

 }

 mIntent = null;

}

Parameter

conn ServiceConnection object applied to bindService() during service connection.

63

CHAPTER 04 - Starting HOVIS Genie Robot Programming

unbindService(mConnection);

Parameter

It is important to get into a habit of cancelling the service properly as it can prevent

improper robot system behavior.

public ServiceConnection mConnection = new ServiceConnection() {

 public void onServiceConnected(ComponentName name, IBinder service) {

 mBinder = IHovisGenieService.Stub.asInterface(service);

 }

 public void onServiceDisconnected(ComponentName name) {

 mBinder = null;

 }

 };

In Android, one screen is composed of one Activity. During App creation, creating one

Activity is same as creating one screen. During regular smart phone App creation. screen

is created by inheriting Activity class defined in android.app.Activity.

Robot App can also be create screen by inheriting Actity class. However, unlike regular

smart phone App, following two items must be considered before creating Acitivity.

First, Synchronization of control is required since there is only one robot. If control

synchroniztion is not guranteed, precise robot control cannot be guranteed. There is a

potential danger since Activity manager may not gurantee control synchroniztion. The

danger lies with the fact that screen may disappear but the Activity representing the

screen did not end.

Item to Consider

1. Synchronization of control since there is only one robot

2. On/Off control required on App screen

4.3 Creating Base Activity for Robot System

Learning With HOVIS Genie/App Android Robot Programming

64

 1: package com.dongburobot.genieapidemo;

 2:

 3: import android.app.Activity;

 4: import android.os.Bundle;

 5: import android.view.Window;

 6: import android.view.WindowManager;

 7:

 8: public class BaseActivity extends Activity {

 9:

 10: protected GenieApiDemoApplication myRobotApp;

 11:

 12: @Override

 13: protected void onCreate(Bundle savedInstanceState) {

 14: super.onCreate(savedInstanceState);

 15:

 16: // Screen setup

 17: this.getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,

 18: WindowManager.LayoutParams.FLAG_FULLSCREEN);

 19: this.getWindow().addFlags(WindowManager.LayoutParams.FLAG_SHOW_WHEN_LOCKED

 20: | WindowManager.LayoutParams.FLAG_DISMISS_KEYGUARD

 21: | WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON

 22: | WindowManager.LayoutParams.FLAG_TURN_SCREEN_ON);

 23: this.requestWindowFeature(Window.FEATURE_NO_TITLE);

 24:

For example, Supposing robotforward Activity was in the midst of commanding the

robot to move forward when low battery level switches robot to the charging mode and

the screen also switches to ChargingActivity. If the robotforward Activity does not end

and stays in the stack continuing to issue move forward command, this could affect the

automatic charging which must be performed by ChargingActivity. This type of situation

may occur very rarely and the developer could also forsee such a situation and try to write

very precise codes to minimize the danger but the best method would be to stop such

situation from occuring at all.

The robot App we will be creating will end the Activity when that Activity disappears

from the screen. Method that is always called when Activity disappears from the screen is

onPause(). Therefore, Activity must be guranteed to end at onPause().

65

CHAPTER 04 - Starting HOVIS Genie Robot Programming

 25: myRobotApp = (GenieApiDemoApplication)this.getApplicationContext();

 26: }

 27:

 28: @Override

 29: protected void onPause() {

 30: super.onPause();

 31:

 32: this.finish();

 33: }

 34: }

[Listing 4-2] BaseActivity.java

onCreate() in 13th line of BaseActivity is called when Activity is created. Required parts

for starting Activity are created in onCreate(). Screen setup codes are required. This falls

under Item to Consider #2 .

// Screen Setup (Item to Consider 2)

 this.getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,

 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 this.getWindow().addFlags(WindowManager.LayoutParams.FLAG_SHOW_WHEN_LOCKED

 | WindowManager.LayoutParams.FLAG_DISMISS_KEYGUARD

 | WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON

 | WindowManager.LayoutParams.FLAG_TURN_SCREEN_ON);

 this.requestWindowFeature(Window.FEATURE_NO_TITLE);

Codes in line17~23 are screen setup codes. Codes in line17~18 are to set current screen

to FULL SCREEN. Codes in line19~22 shows screen even where there is a lock, does not

show Android key input screen, screen is always On, uses flag for maintaining On state

to setup screen. Code in line 23 removes screen title bar. There ar many more flags used

for screen setup. Refer to Android developers site for more information.

Learning With HOVIS Genie/App Android Robot Programming

66

GenieApplicationDemoApplication object is decalred in line 10. myRobotApp assigns global

application object of the current process returned by getApplicationContext().

Codes in Line 25 within onCreate(), objects and variables included in GenieApiDemoApplication

class can be used by all Activity created by inheriting BaseActivity. This sets the base for

using robot service by from all Activity.

This ends the basic setup for starting robot programming. This chapter discussed method

of using robot service to control the robot. Next chapter will discuss functions provided

by robot service.

@Override

protected void onPause() {

 super.onPause();

 // Item to Consider 1

 this.finish();

protected GenieApiDemoApplication myRobotApp;

…

myRobotApp = (GenieApiDemoApplication)this.getApplicationContext();

onPause() in line 29 is called at the time Activity disappears from the screen. As mentioned

previously, to sychronize robot control, our robot App does not leave Activity in the stack.

Use finish() in line 32 to end the Activity completely. This falls under “Item to Consider 1”.

67

CHAPTER 05 - HOVIS Genie API (Application Programing Interface)

05 HOVIS Genie API
 (Application Programing Interface)

Previous chapter discussed binding to use the robot service. This chapter will

discuss functions provided by Hovis Genie API. Functions provided by Hovie Genie

API are as follows.

 Drivetrain Function

Drivetrain function is collection of functions related to Hovis Genie omniwheel

drivetrain. These functions are used for configuring the drivetrain wheel and wheel

operation. Actual robot movement is performed by the navigation function.

 Navigation Function

Navigation function is responsible for actual movement of Hovis Genie. These

functions abstract Omniwheel drive train so that Genie can move following the x,y,

theta coordinates.

 Sensor Function

Sensor related function provides control interface for various sensors (distance

sensor, ground detection sensor, touch sensor, and etc).

 TTS(Text-to-Speech) Function

TTS function converts text string input to robot speech.

 Sound(sound effect) Function

Sound function can output various sound effects depending on the status of the

robot.

 Multimedia(Audio & Video) Function

Provides play/stop function for audio video files (MP3, MP4, AVI …) by the robot.

 Motion & Servo Motor Related Function

 Provides robot motion related functions.

Service for controlling Hovis Genie is performed by GenieContorlService running in the back-

ground in MID. User is able to use the robot service by using GenieControlService to bind the

service.

Learning With HOVIS Genie/App Android Robot Programming

68

dmel_drive_servo_on

boolean dmel_drive_servo_on(ComponentName cn)
 throws android.os.RemoteException
Robot drivetrain (DRS-0102) “Servo On” 3 servo motors
Parameters:
cn - Component nameReturns:
Return true when successful, false when fail.
Throws:
android.os.RemoteException

dmel_drive_set_movable

void dmel_drive_set_movable(ComponentName cn,
 boolean flag)
 throws android.os.RemoteException
Setup robot drivetrain operational state
Parameters:
cn - Component name
flag - Operational true, Not operational false
Throws:
android.os.RemoteException

dmel_drive_get_movable

boolean dmel_drive_get_movable(ComponentName cn)
 throws android.os.RemoteException
Return robot drivetrain operational state.
Parameters:
cn - Component name
Returns:
Operational true, Not operationa false return
Throws:
android.os.RemoteException

5.1 Drivetrain Function

69

CHAPTER 05 - HOVIS Genie API (Application Programing Interface)

dmel_robot_set_horizontal_velocity

boolean dmel_robot_set_horizontal_velocity(ComponentName cn,
 double vel,
 double ang)
 throws android.os.RemoteException
Setup horizontal speed of the robot drivetrain
Parameters:
cn - Component name
vel - Horizontal velocit (unit : m/s)
ang - Compensated angle from horizontal plane (unit : rad value + CCW, - CW)
Returns:
Throws:
android.os.RemoteException

dmel_robot_set_rotation_velocity

boolean dmel_robot_set_rotation_velocity(ComponentName cn,
 double vel)
 throws android.os.RemoteException
Set rotational vlecocity for drivetrain.
Parameters:
cn - Component name
vel - rotational velocity (rad/s)
Returns:
Success true, fail false return
Throws:
android.os.RemoteException

dmel_robot_set_velocity

boolean dmel_robot_set_velocity(ComponentName cn,
 double lin,
 double ang,
 double horizontal_ang,
 boolean flag)
 throws android.os.RemoteException
Drive robot drivetrain.
Parameters:
cn - Component name
lin - horizontal velocity (m/s)
ang - rotational velocity (rad/s) +는 CCW, -는 CW
horizontal_ang - upto set value (+ CCW, - CW) horizontal movement with compensated
angle.
flag - true horizontal movement, move according to horizontal_ang value, false move according
to angular movement ang value
fThrows:
android.os.RemoteException

Learning With HOVIS Genie/App Android Robot Programming

70

dmel_param_set_max_lin_velocity

boolean dmel_param_set_max_lin_velocity(ComponentName cn,
 double vel)
 throws android.os.RemoteException
Set maxium robot drivetrain horizontal velocity.
Parameters:
cn - Component name
vel - maximum horizontal velocity (m/s)
Returns:
Setup success true, fail false
Throws:
android.os.RemoteExceptio

dmel_param_get_max_lin_velocity

double dmel_param_get_max_lin_velocity(ComponentName cn)
 throws android.os.RemoteException
Returm robot drivetrain maximum velocity.
Parameters:
cn - Component name
Returns:
Return maximum horizontal velociy (m/s)
Throws:
android.os.RemoteException

dmel_param_set_max_ang_velocity

boolean dmel_param_set_max_ang_velocity(ComponentName cn,
 double vel)
 throws android.os.RemoteException
Set robot drivetrain maximum angular velocity.
Parameters:
cn - Component name
vel - maximum angular velocity (rad/s)
Returns:
setup success true, fail false
Throws:
android.os.RemoteException

71

CHAPTER 05 - HOVIS Genie API (Application Programing Interface)

dmel_param_get_max_ang_velocity

double dmel_param_get_max_ang_velocity(ComponentName cn)
 throws android.os.RemoteException
Return robot drivetrain maximum angular velocity
Parameters:
cn - Component name
Returns:
Return maximum angular velocity (rad/s)
Throws:
android.os.RemoteException
android.os.RemoteException

dmel_robot_set_pose

boolean dmel_robot_set_pose(ComponentName cn,
 double x,
 double y,
 double theta)
 throws android.os.RemoteException
Set current robot position by x, ,y, theta. If current robot position is set to (0, 0, 0),current
position becomes standard.
Parameters:
cn - Component name
x - (meter)
y - (meter)
theta - (Radian -PI ~ +PI)
Returns:
success true, fail false return
Throws:
android.os.RemoteException

dmel_robot_get_pose

double[] dmel_robot_get_pose(ComponentName cn)
 throws android.os.RemoteException
Return current position based on starting position
Parameters:
cn - Component name
Returns:
Stadard starting position return each x, y, theta(Radian -PI ~ +PI) value to double[0] ~
double[2]
Throws:
android.os.RemoteException

5.2 Navigation Function

Learning With HOVIS Genie/App Android Robot Programming

72

dmel_navigate_move_pose

void dmel_navigate_move_pose(ComponentName cn,
 double x,
 double y,
 double theta)
 throws android.os.RemoteException
From the robot starting position, move to (x, y, theta) position.
Parameters:
cn - Component name
x - standard starting position x (meter)
y - standard starting position y (meter)
theta - Robot Heading from starting point standard robot heading theta (Radian -PI ~ +PI)
Throws:
android.os.RemoteException

dmel_navigate_prepare

void dmel_navigate_prepare(ComponentName cn)
 throws android.os.RemoteException
Perform initialization for robot navigation. When initialized, current position is set to (0,0,0),
current Heading is set to 0 degrees.
Parameters:
cn - Component name
Throws:
android.os.RemoteException

dmel_navigate_add_goal_pose

boolean dmel_navigate_add_goal_pose(ComponentName cn,
 double x,
 double y,
 double theta,
 boolean rflag,
 int time)
 throws android.os.RemoteException
Add robot waypoint. based on standard starting position set in the robot (0, 0, 0) set waypoint.. (dmel_navi-
gate_prepare) (reference) robot moves to the set waypoint through dmel_navigate_start().
Parameters:
cn - Component name
x - standard starting position x (meter)
y - standard starting position y (meter)
theta - Robot Heading from starting point standard robot heading theta (Radian -PI ~ +PI)
rflag - when true, robot will face theta degree direction when reaching destination
time - robot waiting time after reaching destination (sec)
Returns:
Throws:
android.os.RemoteException

73

CHAPTER 05 - HOVIS Genie API (Application Programing Interface)

dmel_navigate_start

boolean dmel_navigate_start(ComponentName cn)
 throws android.os.RemoteException
Run robot navigation. Robot navigation will visit previously set goal_pose one by one.
Parameters:
cn - Component name
Returns:
Success true,fail false return
Throws:
android.os.RemoteException

dmel_navigate_stop

boolean dmel_navigate_stop(ComponentName cn)
 throws android.os.RemoteException
Stop robot navigation.
Parameters:
cn - Component name
Returns:
Success true, fail false return
Throws:
android.os.RemoteException

dmel_robot_get_obs

double[] dmel_robot_get_obs(ComponentName cn)
 throws android.os.RemoteException
Return front detection PSD sensor value. From front to clockwise direction 0, 1, 2, 3, 4
Parameters:
cn - Component name
Returns:
Retun 5 front detection sensor values to double[0] ~ double[4]
Throws:
android.os.RemoteException

5.3 Sensor Function

Learning With HOVIS Genie/App Android Robot Programming

74

dmel_robot_get_cliff

double[] dmel_robot_get_cliff(ComponentName cn)
 throws android.os.RemoteException
Return ground detection PSD sensor value. From front to clockwise direction 0, 1, 2
Parameters:
cn - Component name
Returns:
Return 3 ground detection sensor values to double[0] ~ double[2]
Throws:
android.os.RemoteException

dmel_hri_get_head_touch_info

boolean dmel_hri_get_head_touch_info(ComponentName cn)
 throws android.os.RemoteException
Return head touch detction.
Parameters:
cn - Component name
Returns:
Head touched true, not touched false return
Throws:
android.os.RemoteException

dmel_hri_get_hand_touch_info

boolean[] dmel_hri_get_hand_touch_info(ComponentName cn)
 throws android.os.RemoteException
Return hand (boths hands) touch detection.
Parameters:
cn - Component name
Returns:
touched true, not touched false return. boolean[2] (boolean[0] : left hand touch, boolean[1]
: right hand touch)
Throws:
android.os.RemoteException

75

CHAPTER 05 - HOVIS Genie API (Application Programing Interface)

dmel_tts_speak

void dmel_tts_speak(ComponentName cn,
 java.lang.String text)
 throws android.os.RemoteException
Play TTS(Text-to-Speech).
Parameters:
cn - Component name
text - txt string to be changed to speech String ex)”Hello. Iam Hovie Genie.”
Throws:
android.os.RemoteException

dmel_tts_stop

void dmel_tts_stop(ComponentName cn)
 throws android.os.RemoteException
Stop TTS(Text-to-Speech).
Parameters:
cn - Component name
Throws:
android.os.RemoteException

5.4 TTS(Text-to-Speech) Function

dmel_sound_play_intro

void dmel_sound_play_intro(ComponentName cn)
 throws android.os.RemoteException
Play sound effect. (Intro sound effect)
Parameters:
cn - Component name
Throws:
android.os.RemoteException

5.5 Sound(sound effect) Function

Learning With HOVIS Genie/App Android Robot Programming

76

dmel_sound_play_dingdong

void dmel_sound_play_dingdong(ComponentName cn)
 throws android.os.RemoteException
Play sound effect. (Ding dong sound effect)
Parameters:
cn - Component name
Throws:
android.os.RemoteException

dmel_sound_play_fail

void dmel_sound_play_fail(ComponentName cn)
 throws android.os.RemoteException
Play sound effect. (Fail sound effect)
Parameters:
cn - Component 이름
Throws:
android.os.RemoteException

dmel_sound_play_horn

void dmel_sound_play_horn(ComponentName cn)
 throws android.os.RemoteException
Play sound effect. (Horn sound effect)
Parameters:
cn - Component name
Throws:
android.os.RemoteException

dmel_sound_play_chimes

void dmel_sound_play_chimes(ComponentName cn)
 throws android.os.RemoteException
Play sound effect. (Chime sound effect)
Parameters:
cn - Component name
Throws:
android.os.RemoteException

77

CHAPTER 05 - HOVIS Genie API (Application Programing Interface)

dmel_voice_recognition_start

void dmel_voice_recognition_start(ComponentName cn)
 throws android.os.RemoteException
Input speech for speech recognition.
Parameters:
cn - Component name
Throws:
android.os.RemoteException

dmel_voice_recognition_stop

void dmel_voice_recognition_stop(ComponentName cn)
 throws android.os.RemoteException
End speech input for speech recognition.
Parameters:
cn - Component name
Throws:
android.os.RemoteException

[Speech Recognition Related Function]

dmel_voice_recognition_set_mode

void dmel_voice_recognition_set_mode(ComponentName cn,
 boolean is_auto)
 throws android.os.RemoteException
Change mode to speech recognition mode
Parameters:
cn - Component name
is_auto - true automatically repeat speech recognition from start to end.
Throws:
android.os.RemoteException

dmel_voice_recognition_get_mode

boolean dmel_voice_recognition_get_mode(ComponentName cn)
 throws android.os.RemoteException
Return speech recognition possibility.
Parameters:
cn - Component name
Returns:
Speech recognition possible true, not possible false
Throws:
android.os.RemoteException

Learning With HOVIS Genie/App Android Robot Programming

78

dmel_audio_play_mp3

void dmel_audio_play_mp3(ComponentName cn,
 java.lang.String path)
 throws android.os.RemoteException
Play MP3 file. (default path set to /sdcard/dongbu/)
When actual path is /sdcard/dongbu/audio/test.mp3
mBinder.dmel_audio_play_mp3(getComponentName() , “audio/test,mp3”);
Parameters:
cn - Component name
path - MP3file path (include file name, except default path)
Throws:
android.os.RemoteException

dmel_audio_set_volume

void dmel_audio_set_volume(ComponentName cn,
 float volume)
 throws android.os.RemoteException
Adjust volume. Minimum volume : 0, Maximum volume : 1
Parameters:
cn - Component name
volume - Volume size setup (0~1)
Throws:
android.os.RemoteException

dmel_audio_get_volume

float dmel_audio_get_volume(ComponentName cn)
 throws android.os.RemoteException
Return current volume size. Minimum volume : 0, Maximum volume : 1
Parameters:
cn - Component name
Returns:
Return volume size (0~1)
Throws:
android.os.RemoteException

5.6 Multimedia(Audio & Video) Function

79

CHAPTER 05 - HOVIS Genie API (Application Programing Interface)

dmel_motion_play

void dmel_motion_play(ComponentName cn,
 java.lang.String motion)
 throws android.os.RemoteException
Play robot motion file. (Default path set to /sdcard/dongbu/motion/)
Parameters:
cn - Component name
motion - Motion file name ex) “01n_shake_head.dmt”
Throws:
android.os.RemoteException

dmel_audio_stop_mp3

void dmel_audio_stop_mp3(ComponentName cn)
 throws android.os.RemoteException
Stop MP3 play
Parameters:
cn - Component name
Throws:
android.os.RemoteException

dmel_video_play_mp4

void dmel_video_play_mp4(ComponentName cn,
 java.lang.String path)
 throws android.os.RemoteException
Play MP4 file. (Default path set to /sdcard/dongbu/)
When actual path is /sdcard/dongbu/video/test.mp3
mBinder.dmel_video_play_mp4(getComponentName() , “video/test,mp3”);
Parameters:
cn - Component name
path - MP4file path (include file name, except default path)
Throws:
android.os.RemoteException

5.7 Motion & Servo Motor Related Function

Learning With HOVIS Genie/App Android Robot Programming

80

dmel_motion_play2

void dmel_motion_play2(ComponentName cn,
 java.lang.String motion,
 boolean repeat,
 boolean sync)
 throws android.os.RemoteException
Play robot motion file. Media Sync option and repeat setup possible.
(Path set to /sdcard/dongbu/motion/)
Parameters:
cn - Component name
motion - Motion file name ex) “01n_shake_head.dmt”
repeat - Continuously repeat until stop command received
sync - Sync with media. (Takes priority over repeat)
Throws:
android.os.RemoteException

dmel_motion_servo_on

boolean dmel_motion_servo_on(ComponentName cn,
 int id)
 throws android.os.RemoteException
Set “Servo ON” to upper body servo motor with ID value
Parameters:
cn - Component name
id - id motor ID (0: right shoulder motor, 1: right upper arm motor, 2: right forearm motor, 3:
left shoulder motor, 4: left upper arm motor, 5: left forearm motor, 18: head motor, 19: waist
motor)
Returns:
Success true, fail false return
Throws:
android.os.RemoteException

dmel_motion_stop

void dmel_motion_stop(ComponentName cn)
 throws android.os.RemoteException
Stop current motion
Parameters:
cn - Component name
Throws:
android.os.RemoteException

81

CHAPTER 05 - HOVIS Genie API (Application Programing Interface)

dmel_motion_servo_off

boolean dmel_motion_servo_off(ComponentName cn,
 int id)
 throws android.os.RemoteException
Set “Servo OFF” to upper body servo motor with ID value
Parameters:
cn - Component name
id - id motor ID (0: right shoulder motor, 1: right upper arm motor, 2: right forearm motor, 3:
left shoulder motor, 4: left upper arm motor, 5: left forearm motor, 18: head motor, 19: waist
motor)
Returns:
Success true, fail false return
Throws:
android.os.RemoteException

dmel_motion_set_servo

boolean dmel_motion_set_servo(ComponentName cn,
 int on)
 throws android.os.RemoteException
Set all upper body servo motor to “Servo ON”.
Parameters:
cn - Component name
on - Servo ON : 1, Servo OFF : 0
Returns:
Success true, fail false return
Throws:
android.os.RemoteException

dmel_motion_get_position

int dmel_motion_get_position(ComponentName cn,
 int id)
 throws android.os.RemoteException
Return current position value of the upper body servo motor with Servo ID
Parameters:
cn - Component name
id - motor ID (0: right shoulder motor, 1: right upper arm motor, 2: right forearm motor, 3:
left shoulder motor, 4: left upper arm motor, 5: left forearm motor, 18: head motor, 19: waist
motor)
Returns:
Returns current position value of applicable motor
Throws:
android.os.RemoteException

Learning With HOVIS Genie/App Android Robot Programming

82

dmel_motion_set_calib_value

boolean dmel_motion_set_calib_value(ComponentName cn,
 int id,
 int val)
 throws android.os.RemoteException
Adjust 0 point value of the upper body motor with Servo ID
Parameters:
cn - Component name
id - motor ID (0: right shoulder motor, 1: right upper arm motor, 2: right forearm motor, 3:
left shoulder motor, 4: left upper arm motor, 5: left forearm motor, 18: head motor, 19: waist
motor)
val - 0 point adjust value (-127 ~ 127)
Returns:
succesful 0 point adjustment true, fail false return
Throws:
android.os.RemoteException

dmel_hri_set_brow_beam

void dmel_hri_set_brow_beam(ComponentName cn,
 int brightness)
 throws android.os.RemoteException
Setup forehead LED.
Parameters:
cn - Component name
brightness - 0 : off, 1 : weak light, 2 : medium light, 3 : bright light
Throws:
android.os.RemoteException

5.8 Head LED Control Realted Function

83

CHAPTER 05 - HOVIS Genie API (Application Programing Interface)

dmel_hri_set_ear_led

void dmel_hri_set_ear_led(ComponentName cn,
 int earCode)
 throws android.os.RemoteException
Setup ear LED.
Parameters:
cn - Component name
earCode - 0 : maintain current state, 1 : On, 2 : Off, 3 : blink
Throws:
android.os.RemoteException

dmel_hri_set_mouth_led

void dmel_hri_set_mouth_led(ComponentName cn,
 int mouthCode)
 throws android.os.RemoteException
Setup mouth LED.
Parameters:
cn - Component name
mouthCode - 0 : maintain current state, 1 : middle ON, 2 : three ON, 3 : middle blink, 4 : all
three blink, 5 : talk
Throws:
android.os.RemoteException

dmel_hri_set_eye_led

void dmel_hri_set_eye_led(ComponentName cn,
 int eyeCode,
 int colorCode)
 throws android.os.RemoteException
Setup eye LED.
Parameters:
cn - Component name
eyeCode - 0 : maintain current state, 1 : round and round, 2 : eyebrow blink, 3 : eyebrow
stop, 4 : light all, 5 : all blink, 6 : left-right effect, 7 :up-down effect, 8 : off
colorCode - 1 : RED LED, 2 : BLUE LED, 3 : PURPLE (RED + BLUE) LED
Throws:
android.os.RemoteException

HOVIS Genie/App 으로 배우는 안드로이드 로봇 프로그래밍

84

06 Hovis Genie Basic Example

There are total of 7 screens combined in GenieApiDemo. In other words,

GenieApiDemo is an App with 7 Activity combined. File to be added and edited

for each section are shown int the table blow [table 6-1] which shows 7 Activity

contained in GenieApiDemo.

Writing example found in each section adds an Activity to the App thereby changing

the structure of the App. These changes have to be declared and added in the

AndroidMainfest.xml. Open the AndroidManifest.xml and add the remaining 6

Activitiy excluding the Activity already added when project was created by referring

to the [Listing 6-1] lines 22~27.

In Chapter 6, we will start robot programming usng the robot service in ernest. In Chapter 4,

we created GenieApiDemo project to do basic work to use robot service. In this section, we

will add various robot control examples and complete GenieApiDemo project.

Section Content UI layout Source code

6.1. Main screen activity_main.xml MainActivity.java

6.2. Drivetrain control activity_testomniwheel.xml TestOmniwheelActivity.java

6.3. Motion control activity_testmotion.xml TestMotionActivity.java

6.4. Head LED control activity_testled.xml TestLedActivity.java

6.5. TTS control activity_testtts.xml TestTTSActivity.java

6.6. PSD sensor control activity_testpsdsensor.xml TestPSDSensorActivity.java

6.7. Touch sensor control activity_testtouchsensor.xml TestTouchSensorActivity.java

[Table 6-1] GenieApiDemo screen format

85

CHAPTER 06 - Hovis Genie Basic Example

 1: <manifest xmlns:android=”http://schemas.android.com/apk/res/android”

 2: package=”com.dongburobot.genieapidemo”

 3: android:versionCode=”1”

 4: android:versionName=”1.0” >

 5:

 6: <uses-sdk

 7: android:minSdkVersion=”10”

 8: android:targetSdkVersion=”10” />

 9:

 10: <application

 11: android:name=”.GenieApiDemoApplication”

 12: android:icon=”@drawable/ic_launcher”

 13: android:label=”@string/app_name”

 14: android:theme=”@style/AppTheme” >

 15: <activity

 16: android:name=”.MainActivity”>

 17: <intent-filter>

 18: <action android:name=”android.intent.action.MAIN” />

 19: <category android:name=”android.intent.category.LAUNCHER” />

 20: </intent-filter>

 21: </activity>

 22: <activity android:name=”.TestOmniwheelActivity” />

 23: <activity android:name=”.TestMotionActivity” />

 24: <activity android:name=”.TestLedActivity” />

 25: <activity android:name=”.TestTTSActivity” />

 26: <activity android:name=”.TestPSDSensorActivity” />

 27: <activity android:name=”.TestTouchSensorActivity” />

 28: </application>

 29:

 30: </manifest>

[Listing 4-2] BaseActivity.java

Learning With HOVIS Genie/App Android Robot Programming

86

[Diagram 6-1] AndroidManifest.xml structure

[Diagram 6-1] shows the strucre of GenieApiDemo App seen through AndroidManifest.

xml. GenieApiDemo <application>(=App) is enabled by GenieApiDemoApplication.

java and has 7 <activity>. Each <activity> is enabled by MainActivity.java, …,

TestTouchSensorActivity.java. Among the <activity>, MainActivity has <intent-

filter> containing LAUNCHER category and MAIN action which shows that the

screen is the first screen to appear when App is started from the launcher.

We already edited to the structure of the App from the AndroidManifest.xml

so it is no longer necessary to make any changes to AndroidManifest.xml each

time new example is added. Not paying enough attention to the App structure in

AndroidManifest.xml is a common mistake made by many App developers. Care

should be taken to avoid this type mistake that can cause App error.

Starting from the next page, explanation will be based on the examples. Refer

to the Android developer website or to other Android sources for more indepth

information.

87

CHAPTER 06- Hovis Genie Basic Example

In Android, one screen is composed of one Activity and this Actviviy normally

contains XML and Java file which composes UI layout. Files contained in the Main

screen are activity_main.xml and MainActivity.java

There is no need to add 2 files mentioned above as both activity_main.xml and

MainActivity.java files were automatically added in Chapter 4 when GenieApiDemo

was created.

GenieApiDemo > res > layout folder in Eclipse Package Explorer contains all UI

layout including the activity_main.xml .

Find and double click on the activity_main.xml and add the source as shown in

[Listing 6-2].

6.1 Main Screen Composition

 1: <RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 2: xmlns:tools=”http://schemas.android.com/tools”

 3: android:layout_width=”match_parent”

 4: android:layout_height=”match_parent” >

 5:

 6: <GridView

 7: android:id=”@+id/gridview_apidemos”

 8: android:layout_width=”match_parent”

 9: android:layout_height=”match_parent”

 10: android:padding=”10dp”

 11: android:verticalSpacing=”10dp”

 12: android:horizontalSpacing=”10dp”

 13: android:numColumns=”auto_fit”

 14: android:columnWidth=”60dp”

 15: android:stretchMode=”columnWidth”

 16: android:gravity=”center”

 17: android:background=”#222222”

 18: />

 19:

 20: </RelativeLayout>

[Listing 6-2] activity_main.xml

Learning With HOVIS Genie/App Android Robot Programming

88

activity_main.xml structure has <RelativeLayout> as the highest tag with

<GridView> below.

RelativeLayout is a layout which places the widgets on the screen relative to other

and GridViw displays widgets in in a two-dimensional, scrollable grid.

[Diagram 6-2] shows the screen showing UI created by activity_main.xml.

<GridView> takes up the whole screen. Assigned value “match_parent” in size

properties located in line 8~9 android:layout_width and android:layout_height

makes the size same as the parent screen and the parent screen <ReleativeLayout>

takes up the whole screen.

<GridView> taking up the whole screen includes the lower widgets in grid formation.

Other properties of <GridView> are used to setup how lower widgets will be placed

in the screen. Presently, widget placement is setup as android:numColumns=”auto_

fit”. Size of the lower widgets determine how many widgets can be placed on each

line.

[Diagram 6-2] Main screen

89

CHAPTER 06- Hovis Genie Basic Example

 Important properties of ReleativeLayout

http://developer.android.com/guide/topics/ui/layout/relative.html

 Important properties of GridView

http://developer.android.com/guide/topics/ui/layout/gridview.html

Lower widges in <GridView> are composed of image icons and texts. Another XML

file is required to define the widgets. Add /res/layout에 demoitems.xml file and edit

the source code as follows.

 1: <?xml version=”1.0” encoding=”utf-8”?>

 2: <LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 3: android:layout_width=”fill_parent”

 4: android:layout_height=”fill_parent”

 5: android:orientation=”vertical”

 6: android:gravity=”center”>

 7:

 8: <ImageView

 9: android:layout_width=”65dp”

 10: android:layout_height=”65dp”

 11: android:padding=”6dp”

 12: android:gravity=”center”

 13: android:id=”@+id/demo_icon”/>

 14: <TextView

 15: android:layout_width=”65dp”

 16: android:layout_height=”30dp”

 17: android:gravity=”center”

 18: android:ellipsize=”end”

 19: android:singleLine=”true”

 20: android:id=”@+id/demo_name”/>

 21:

 22: </LinearLayout>

[Listing 6-3] demoitems.xml

Learning With HOVIS Genie/App Android Robot Programming

90

2) Declare MainActivity class member variable (Lines19~23)

mMainGrid is a variable for assigning GridView declared in activity_main.xml.

mMainAdapter is an object of Inner class MainAdapter which will be written in

(4). It is used for selecting data source which will be assigned to GridView. Lower

widgets in GridView are composed of image icons and texts. Data concerning

these two will be assigned to mDemoImgList and mDemoNameList.

3) Create onCreate() (Lines 26~50)

Contains source codes for using member variable declared in (2).

In line 28, setContentView() is used to activity_main.xml to MainActivity. In lines

30~44, Data to be output to lower widgets in GridView are assigned to LinkedList.

Lines 46~48 assigns Adapter to GridView. Adapter is used for supplying multiple

data source.Line 49 contains code that makes it possible for widgets assigned to

GridView to be clicked.

public LinkedList<String> mDemoNameList;

public LinkedList<Integer> mDemoImgList;

private GridView mMainGrid;

private MainAdapter mMainAdapter;

demoitems.xml is composed of <ImageView> and <TextView>. This represents the

image icons and the texts in [Diagram 6-2]. This only expresses the widget structure

expressed in <GridView>. Actual data source are not in <GridView>. Receiving the

actual data source occurs in MainActivity.java. Open the MainActivity.java and

write the source codes as shown in [Listing 6-4].

1) Inhertiting BaseActivity Class (Line 18)

 public class MainActivity extends BaseActivity …

BaseActivity is a class created in Chapter 4. It is a redefined Activity class taking

into account special properties of robot programming. BaseActivity uses the whole

MID screen and prevents Activity from piling in Android stack and also allows use

of global varialble mBinder to use service.

91

CHAPTER 06- Hovis Genie Basic Example

4) Create MainActivity Inner class MainAdapter (Lines 97~126)

This is the most importand section of this example code. MainAdapter is our own

Adapter class inherited from BaseAdapter. MainAdapter is used for providing data

source to GridView. Since MainAdapter was inherited from BaseAdapter, getView(),

getCount(), getItem(), getItemId() has to be overridden.

getView(), getCount() implemented in MainAdapter are called when Adapter applied

widget is sent to output. getItem() and getItemId() must be implemented but

explanation will be skpped since they do not play any role.

getView() method is called each time GridView draws lower widget on the screen.

When MainActivity was created. actual data image and text to be output were

already assigned to GridView by onCreate(). getView() uses this data.

getCount() returns actual number or data that will be ouput to GridView. Since

our example has 6 image and text, 6 will be returned. Returned 6 calls getView() 6

times resulting in 6 icons and texts in GridView.

Adapter will always be used in source codes such as List UI that require multiple

data source.

Reference : Assingning resouces in Android (R.java)

R.drawable. filename /res/drawable-*dpi image resource

R.layout. filename /res/layout access layout XML file

R.id.ID From each layout file access delcared widget using ID

5) Inherit OnItemClickListener interface multilple times (Line 18)

 public class MainActivity extends BaseActivity implements OnItemClickListener

Inherit OnItemClickListener multiple times to process the touch event when Grid-

View icon is touched. Input ‘implements OnItemClickListener’, place cursor on top

of

 ‘MainActivity ‘ and add onItemClick().

Learning With HOVIS Genie/App Android Robot Programming

92

6) Create onItemClick() (Lines 58~95)

onItemClick() is a method that processes icon touch event in GridView.

one of the onItemClick() arguments int position shows the location of the touched

icon in GridView. Top left position value is 0 and the value increases by 1. In our

example, Wheel icon returns 0, touch sensor icon returns 5.

onItemClick() uses retuned position value to switch the screen to particular Activity

screen. Coed for starting other Activity is as follows.

 Intent intent = new Intent(this, class name.class);

 startActivity(intent);

When switched to new Activity by startActivity(), MainActivity calls onPause()

function. However, as function is not defined, Pause() function from the parent

class BaseAcitivity is called. When onPause() from BaseActivity is called, Activity

is ended by finish(). (Refer to Chapter 4).

 1: package com.dongburobot.genieapidemo;

 2:

 3: import java.util.LinkedList;

 4:

 5: import android.content.Intent;

 6: import android.os.Bundle;

 7: import android.view.LayoutInflater;

 8: import android.view.Menu;

 9: import android.view.View;

 10: import android.view.ViewGroup;

 11: import android.widget.AdapterView;

 12: import android.widget.AdapterView.OnItemClickListener;

 13: import android.widget.BaseAdapter;

 14: import android.widget.GridView;

 15: import android.widget.ImageView;

 16: import android.widget.TextView;

 17:

 18: public class MainActivity extends BaseActivity implements OnItemClickListener {

 19: public LinkedList<String> mDemoNameList;

93

CHAPTER 06- Hovis Genie Basic Example

 20: public LinkedList<Integer> mDemoImgList;

 21:

 22: private GridView mMainGrid;

 23: private MainAdapter mMainAdapter;

 24:

 25: @Override

 26: public void onCreate(Bundle savedInstanceState) {

 27: super.onCreate(savedInstanceState);

 28: setContentView(R.layout.activity_main);

 29:

 30: mDemoNameList = new LinkedList<String>();

 31: mDemoImgList = new LinkedList<Integer>();

 32: mDemoNameList.add(“Wheel”);

 33: mDemoNameList.add(“Motion”);

 34: mDemoNameList.add(“LED”);

 35: mDemoNameList.add(“TTS”);

 36: mDemoNameList.add(“Distance sensor”);

 37: mDemoNameList.add(“Touch sensor”);

 38:

 39: mDemoImgList.add(R.drawable.icon1);

 40: mDemoImgList.add(R.drawable.icon1);

 41: mDemoImgList.add(R.drawable.icon1);

 42: mDemoImgList.add(R.drawable.icon1);

 43: mDemoImgList.add(R.drawable.icon1);

 44: mDemoImgList.add(R.drawable.icon1);

 45:

 46: mMainGrid = (GridView) findViewById(R.id.gridview_apidemos);

 47: mMainAdapter = new MainAdapter();

 48: mMainGrid.setAdapter(mMainAdapter);

 49: mMainGrid.setOnItemClickListener(this);

 50: }

 51:

 52: @Override

 53: public boolean onCreateOptionsMenu(Menu menu) {

 54: getMenuInflater().inflate(R.menu.activity_main, menu);

 55: return true;

Learning With HOVIS Genie/App Android Robot Programming

94

 56: }

 57:

 58: public void onItemClick(AdapterView<?> parent, View v, int position, long id) {

 59:

 60: Intent intent;

 61:

 62: switch (position) {

 63: case 0:

 64: // wheel(omni wheel) go to control Activity

 65: intent = new Intent(this, TestOmniwheelActivity.class);

 66: startActivity(intent);

 67: break;

 68: case 1:

 69: // go to motion control Activity

 70: intent = new Intent(this, TestMotionActivity.class);

 71: startActivity(intent);

 72: break;

 73: case 2:

 74: // go to head LED control Activity

 75: intent = new Intent(this, TestLedActivity.class);

 76: startActivity(intent);

 77: break;

 78: case 3:

 79: // go to TTS Activity

 80: intent = new Intent(this, TestTTSActivity.class);

 81: startActivity(intent);

 82: break;

 83: case 4:

 84: // go to PSD Activity

 85: intent = new Intent(this, TestPSDSensorActivity.class);

 86: startActivity(intent);

 87: break;

 88: case 5:

 89: // go to Touch Activity

 90: intent = new Intent(this, TestTouchSensorActivity.class);

 91: startActivity(intent);

95

CHAPTER 06- Hovis Genie Basic Example

 92: default:

 93: break;

 94: }

 95: }

 96:

 97: public class MainAdapter extends BaseAdapter {

 98:

 99: public int getCount() {

 100: return mDemoImgList.size();

 101: }

 102:

 103: public Object getItem(int position) {

 104: return null;

 105: }

 106:

 107: public long getItemId(int position) {

 108: return position;

 109: }

 110:

 111: public View getView(int position, View convertView, ViewGroup parent) {

 112: if (convertView == null) {

 113: LayoutInflater li = (LayoutInflater) getApplicationContext()

 114: .getSystemService(LAYOUT_INFLATER_SERVICE);

 115: convertView = li.inflate(R.layout.demoitems, null);

 116: }

 117:

 118: ImageView icon = (ImageView) convertView.findViewById(R.id.demo_icon);

 119: TextView name = (TextView) convertView.findViewById(R.id.demo_name);

 120:

 121: icon.setBackgroundResource(mDemoImgList.get(position));

 122: name.setText(mDemoNameList.get(position));

 123:

 124: return convertView;

 125: }

 126: }

 127: }

 [Listing 6-4] MainActivity.java

Learning With HOVIS Genie/App Android Robot Programming

96

 1: <RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 2: xmlns:tools=”http://schemas.android.com/tools”

 3: android:layout_width=”match_parent”

 4: android:layout_height=”match_parent” >

 5:

 6: <!-- Test Title-->

 7: <TextView

 8: android:id=”@+id/tv_title”

 9: android:layout_width=”match_parent”

 10: android:layout_height=”85dp”

 11: android:text=”Omniwheel test”

 12: />

 13:

 14: <!-- Robot Image -->

 15: <ImageView

 16: android:id=”@+id/iv_image”

 17: android:layout_width=”match_parent”

 18: android:layout_height=”320dp”

 19: android:layout_below=”@id/tv_title”

 20: android:contentDescription=”이미지”

 21: />

 22:

 23: <!-- Start and End Buton -->

 24: <LinearLayout

 25: android:layout_width=”match_parent”

 26: android:layout_height=”wrap_content”

Drivetrain control example is for testing the Hovis Genie omni wheel control. In this

example program, robot will move forward 5ocm and come back to the original position.

Drivetrain control Activity is comprised of activity_testomniwheel.xml and TestOmni

wheelActivity.java. Add each file to /res/layout and /src/com/dongburobot/geniea.

First we will create UI for the drivetrain control Activitiy . Open activitiy_

testomniwheel.xml file and edit the source code as following.

6.2 Drivetrain Control

97

CHAPTER 06- Hovis Genie Basic Example

 27: android:layout_alignParentBottom=”true”>

 28: <Button

 29: android:id=”@+id/btn_start”

 30: android:layout_width=”160dp”

 31: android:layout_height=”wrap_content”

 32: android:text=”Start”

 33: />

 34: <Button

 35: android:id=”@+id/btn_quit”

 36: android:layout_width=”160dp”

 37: android:layout_height=”wrap_content”

 38: android:text=”End”

 39: />

 40: </LinearLayout>

 41:

 42: </RelativeLayout>

<RelativeLayout> is the highest tag in activity_testomniwheel.xml structure and

contains <TextView>, <ImageView>, <LinearLayout>. <LinearLayout> contains two

<Button> widgets.

When <RelativeLayout> is used, each widget must include property assigning relative

position. If the property assigning relative positionis not assigned, widgets will be

placed with top left side of the parent as standard reference. This part was skipped

in the previous example since <RelativeLayout> had only one <GridView> widget.

However when there are multiple widgets as in this example, missing property is

a cause for error.

Among the <RelativeLayout> widgets, <TextView> does not have property and

will be placed at top left. <ImageView> property is in line 19. This line places

<ImageView> below <TextView> whic has tv_title as id. <LinearLayout> proper is in

line 27. <LinearLayout> will be paced at lowest section of <RelativeLayout>

[Listing 6-5] activity_testomniwheel.xml

Learning With HOVIS Genie/App Android Robot Programming

98

[Diagram 6-3] Drivetrain control

from rc > com.dongburobot.genieapi in Eclipse Package Explorer, select

TestOmniwheelActivity.java file and add the source codes in [Listing 6-6]. Writing

method is as follows. This example requires wheel_1.png. Copy this file to res/

drawable-mdpi. (refer to www.dongburobot.com archives)

1) Inherit BaseActivity

 public class TestOmniwheelActivity extends BaseActivity …

2) Declare widget related member variable

private ImageView mIvWheelImg;

private Button mBtnStart;

private Button mBtnQuit;

19: android:layout_below=”@id/tv_title”

…

27: android:layout_alignParentBottom=”true”

…

Screen UI is shown below.

99

CHAPTER 06- Hovis Genie Basic Example

3) Create onCreate()

onCreate() connects layout XML file and sets widget resource to each member variable.

setContentView() in line 21 expresses UI defined in activity_testomniwheel.xml to

Activity screen. Lines 23~25 is used for robot image [Diagram 6-2] setup. Lines

27~30 contain codes used to setup touch event to the buttons.

4) Inherit OnClickListener interface multiple times and then create onClick()

This example has two buttons, ‘Start’ and ‘End’ . Write source codes to process touch

event when button is pressed. First inherit OnClickListener interface multiple times.

 public class TestOmniwheelActivity extends BaseActivity implements OnClickListener …

Add ‘implements OnClickListener’ and then place mouse cursor over‘TestOmniwheel

Activity’ to add onClick().

5) Creat moveOmniWheel(), stopOmniWheel()

moveOmniWheel() is a function that makes robot move forward 50cm and then return to

the original position. stopOmniWheel() is a code that stops the robot.

6) Creat onPause()

onPause() function is called as soon as TestOmniwheelActivity disappears from the

screen. super.onPause() in line 44 calls onPause() from the BaseActivity() which is

parent class of TestOmniwheelActivity. BaseActivity onPause() calls finish() to end

the Activity completely so that Activity will not remain in Android stack.

7) Create onKeyDown()

As MainActivity was also created by inherting BaseActivity. MainActivity will not

stay in Android stack when icon is clicked in GridView and screen switches to

another example. Normally in most of the Apps, when Activity switches from A

-> B Activity, A Activity remains saved in stack so that activity can switch back to

A Activity when back button is pressed. When MainActivity is not saved in Android

memory stack. Pressing the back button will end the App.

onKeyDown() in lines 34-40 contain codes for switching screen to MainActivity

when Back button is pressed. Due to these codes, App will switch to main screen

instead of ending the App when back button is pressed.

TestOmniwheelActivity.java source codes are as follows.

Learning With HOVIS Genie/App Android Robot Programming

100

 1: package com.dongburobot.genieapidemo;

 2:

 3: import android.content.Intent;

 4: import android.os.Bundle;

 5: import android.os.RemoteException;

 6: import android.view.KeyEvent;

 7: import android.view.View;

 8: import android.view.View.OnClickListener;

 9: import android.widget.Button;

 10: import android.widget.ImageView;

 11:

 12: public class TestOmniwheelActivity extends BaseActivity

 implements OnClickListener {

 13:

 14: private ImageView mIvWheelImg;

 15: private Button mBtnStart;

 16: private Button mBtnQuit;

 17:

 18: @Override

 19: protected void onCreate(Bundle savedInstanceState) {

 20: super.onCreate(savedInstanceState);

 21: setContentView(R.layout.activity_testomniwheel);

 22:

 23: mIvWheelImg = (ImageView)findViewById(R.id.iv_image);

 24: mIvWheelImg.setImageResource(R.drawable.wheel_1);

 25: mIvWheelImg.setScaleType(ImageView.ScaleType.FIT_XY);

 26:

 27: mBtnStart = (Button)findViewById(R.id.btn_start);

 28: mBtnQuit = (Button)findViewById(R.id.btn_quit);

 29: mBtnStart.setOnClickListener(this);

 30: mBtnQuit.setOnClickListener(this);

 31: }

 32:

 33: @Override

 34: public boolean onKeyDown(int keyCode, KeyEvent event) {

 35: if (keyCode == KeyEvent.KEYCODE_BACK) {

101

CHAPTER 06- Hovis Genie Basic Example

 36: Intent intent = new Intent(this, MainActivity.class);

 37: startActivity(intent);

 38: }

 39: return super.onKeyDown(keyCode, event);

 40: }

 41:

 42: @Override

 43: protected void onPause() {

 44: super.onPause();

 45: }

 46:

 47: public void onClick(View v) {

 48: switch (v.getId()) {

 49: case R.id.btn_start:

 50: moveOmniwheel();

 51: break;

 52: case R.id.btn_quit:

 53: stopOmniwheel();

 54: break;

 55: default:

 56: break;

 57: }

 58: }

 59:

 60: private void moveOmniwheel() {

 61: if (myRobotApp.mBinder == null)

 62: return;

 63:

 64: try {

 65: myRobotApp.mBinder.dmel_robot_set_pose(getComponentName(), 0, 0, 0);

 66: myRobotApp.mBinder.dmel_navigate_prepare(getComponentName());

 67: myRobotApp.mBinder.

 dmel_navigate_add_goal_pose(getComponentName(), 0.5, 0, 0, true, 1);

 68: myRobotApp.mBinder.

 dmel_navigate_add_goal_pose(getComponentName(), 0, 0, 0, true, 1);

 69: myRobotApp.mBinder.dmel_navigate_start(getComponentName());

Learning With HOVIS Genie/App Android Robot Programming

102

 70: } catch (RemoteException e) {

 71: e.printStackTrace();

 72: }

 73: }

 74:

 75: private void stopOmniwheel() {

 76: if (myRobotApp.mBinder == null)

 77: return;

 78:

 79: try {

 80: myRobotApp.mBinder.dmel_navigate_stop(getComponentName());

 81: } catch (RemoteException e) {

 82: e.printStackTrace();

 83: }

 84: }

 85: }

[Listing 6-6] TestOmniwheelActivity.java

The most importan section in this example are the moveOmni wheel() and

stopOmniwheel() functinons which are called when Start and End button is pressed.

These two functions use the robot service to control the drivetrain. moveOmniwheel()

makes the robot move forward 50cm and then return to the original position.

stopOmniwheel() function stops robot movement.

moveOmniwheel() uses robot service. robot service becomes bound when

GenieApiDemo App is executed. Bound service can call robot API through the

IHovisGenieService object mBinder. mBinder is declared in GenieApiApplication as

follows.

GenieApiDemoApplication.java LIne 14:

 public IHovisGenieService mBinder = null;

GenieApiApplication object is need to approach mBinder defined in GenieApiDe-

moApplication class. This object is declared in BaseActivity.

103

CHAPTER 06- Hovis Genie Basic Example

BaseActivity.java Line 10:

 protected GenieApiDemoApplication myRobotApp;

Since TestOmniwheelActivity is a child class of BaseActivity, myRobotApp can be used

without declaration Therefore, robot service can be approaced using myRobotApp.

mBinder.

LIne 61 of moveOmniwheel() checks to see if myRobotApp.mBinder object is null.

Since robot service operates externally, binding may become disconnected even

though service was bound at the start of the App. This code prevents the error that

would be caused by disconnected binding.

Lines 64~72 are codes for using robot service. Since robot service commuicates with

remote process, RemoteException may occur. try-catch statement has to be written

for robot service exception handling.

Within the section surrounded by try-catch statement there is a section that calls

actual robot service API function. Each robot service function is as follows.

dmel_robot_set_pose

boolean dmel_robot_set_pose(ComponentName cn,
 double x,
 double y,
 double theta)
 throws android.os.RemoteException
Set current robot position with x, ,y, theta. If current robot postion is set to (0, 0, 0). current
location becomes standard.
Parameters:
cn - Component name
x - (meter)
y - (meter)
theta - (Radian -PI ~ +PI)
Returns:
Success true, fail false return
Throws:
android.os.RemoteException

Learning With HOVIS Genie/App Android Robot Programming

104

dmel_navigate_prepare

void dmel_navigate_prepare(ComponentName cn)
 throws android.os.RemoteException
Perform initialization for robot naviation. When initialized, current robot position is set to (0,
0, 0), current Heading Heading is set to 0 degrees.
Parameters:
cn - Component name
Throws:
android.os.RemoteException

dmel_navigate_add_goal_pose

boolean dmel_navigate_add_goal_pose(ComponentName cn,
 double x,
 double y,
 double theta,
 boolean rflag,
 int time)
 throws android.os.RemoteException
Add robot waypoint. Add robot waypoint. based on standard starting position set in the robot (0, 0, 0) set
waypoint.. (dmel_navigate_prepare) (reference) robot moves to the set waypoint through dmel_navigate_start().
Parameters:
cn - Component name
x - Standard starting position x (meter)
y - Standard strting position y (meter)
theta - Robot Heading from starting point standard robot heading theta (Radian -PI ~ +PI)
rflag - when true, robot will face theta degree direction when reaching destination
time - robot waiting time after reaching destination (sec)
Returns:
Throws:
android.os.RemoteException

dmel_navigate_start

boolean dmel_navigate_start(ComponentName cn)
 throws android.os.RemoteException
Run robot navigation. Robot navigation will visit previously set goal_pose one by one.
Parameters:
cn - Component name
Returns:
Success true, Fail false return
Throws:
android.os.RemoteException

105

CHAPTER 06- Hovis Genie Basic Example

myRobotApp.mBinder.dmel_robot_set_pose(getComponentName(), 0, 0, 0);

myRobotApp.mBinder.dmel_navigate_prepare(getComponentName());

myRobotApp.mBinder.dmel_navigate_add_goal_pose(getComponentName(), 0.5, 0, 0, true, 1);

myRobotApp.mBinder.dmel_navigate_add_goal_pose(getComponentName(), 0, 0, 0, true, 1);

myRobotApp.mBinder.dmel_navigate_start(getComponentName());

dmel_robot_set_pose() function sets current robot position by x, y, theta. Since

position was set as 0, 0, 0, current robot positon on the coordinate grid is set as x

coordinate 0, y coordinate 0, and the robot direction is set to 0 degrees. Argument

unit for x,y is in m, theta value unit is in radian.

dmel_navigate_prepare() is a function that perfoms initialization for robot naviation.

This function is as sam as dmel_robot_set_pose(). (From the example above, one of

the two lines can be deleted)

dmel_navigate_add_goal_pose() is used to set the robot waypoint.

dmel_navigate_add_goal_pose() simply adds the waypoint and actual robot movement

starts when dmel_navigate_start() function is called.

 Among the dmel_navigate_add_goal_pose() arguments, except for the first argument

ComponentName, other arguments refer to x m, y m, theta(radian).From the code,

0.5, 0, 0 refers to the direction robot was facing before moving 50cm forward.

Fifth argument of the function sets true or false to whether the robot will face the

direction set in theta in third argument once the robot arrives at the destination.

Sixth argument refers to the wait time (s) at the destination. Codes in our example

is true,1 which means robot will face 0 degree direction and wait 1s after it arrives

at the destination.

dmel_navigate_add_goal_pose() arguments are 0, 0, 0, true, 1. First three arguments

refer to the original postion. Since 4th argument is true, robot will turn and face

forward direction once it arrives back at the original position. Fifth argument will

make robot wait 1s after arriving at original position. Robot will start to move once

dmel_navigate_start() function is called.

Learning With HOVIS Genie/App Android Robot Programming

106

This example will make Hovis Genie peform motion. Motion control refers to

controlling robot motion by controlling robot drivetrain and servomotors making

up the robot joints. Hovis Genie has total of 11 motors. There are 3 motors in each

arm, waist motor, head motor, and 3 omni wheel drivetrain motors.

Motion control requires control of each motor but controlling each motor indivually

makes control difficult and hard to create motion efficiently. Dongbu Robot provides

robot motion editor tool DR-SIM to make robot motion creation more easy and

efficient. Users are able to edit Hovis Genie motion using DR-SIM.

http://www.dongburobot.com/jsp/cms/view.jsp?code=100122&isSkin=Y&cmd=view&boardC

ode=100074&bseq=3703

[Diagram 6-4] DR-SIM motion editor program

6.3 Motion Control

107

CHAPTER 06- Hovis Genie Basic Example

DR-SIM creates robot motion based on virtual 3D motor and provides timeline to

edit robot motion based on time. Motion files created by DR-SIM are used to control

Hovis Geni motion. Motion files have extension DMT.(Refer to DR-SIM manual)

Hovis Genie motion files are saved in SD card installed in MID. Robot motion file pathe

is /dongbu/motion.

Access to robot motion folder is possible by using MID as USB memory device. From

MID Settings > Application > Developer > USB debuggig. Uncheck USB debuggin

and connect MID to PC to access SD card in MID. Access /dongbu/motion.

MID motion folder already contains variety of motions. These motions are basic

motions. Motion list is seen below.

File Name Content

01m_turn_l.dmt Turn from same spot (R)

01m_turn_r.dmt Turn from same spot (L)

01n_adbomen0.dmt Touch stomach with one hand

01n_adbomen1.dmt Touch stomach with both hands

01n_aging.dmt Motor Aging

01n_bend_weist.dmt Bend waist

01n_body.dmt Body wash

01n_clap.dmt Clap from chest level

01n_command1.dmt Conduct1

01n_command2.dmt Conduct 2

01n_command3.dmt Conduct 3

01n_command4.dmt Conduct 4

01n_dance.dmt Dance

01n_face.dmt Wash face

01n_front_hand.dmt Face forward, look around

01n_goodjob.dmt One arm forward(Best!)

Learning With HOVIS Genie/App Android Robot Programming

108

01n_shake_head2.dmt Shake both arms front and back altenately

01n_shake_head.dmt Fast head shake

01n_sidebyside.dmt One arm forward

01n_sorrow.dmt Cry (Move both hands L.R in front of the eyes

01n_stare0.dmt Look around from same spot

01n_stare1.dmt Look around with one hand on head

01n_stare2.dmt Look around with one hand beside the ear

01n_stretching.dmt Stretch

01n_tekwuando.dmt Takwondo

01n_tekwuando_wide.dmt Taekwondo (MID landscape)

File Name Content

01n_gymnastics.dmt Exercise

01n_hide.dmt Cove face with both hands

01n_hurrah0.dmt Walk around with both arms lifted

01n_hurrah1.dmt
Lift both arms and shake arms L/R: opposite

direction

01n_hurrah2.dmt
Lift both arms and shake both arms L/R: same

direction

01n_kiss0.dmt Kiss1 (put one hand to mouth and then remove)

01n_kiss1.dmt Kiss2 (Put both hands to mouth and then remove)

01n_love.dmt Love you (Lift both arema and make heart [circle]

01n_muscle Show off muscle

01n_pos1 Pose 1

01n_scrape.dmt Rub eye (move one hand l/f in front of the eye)

01n_scratch Scratch head

01n_self_msg.dmt Self massage

01n_shake_head0.dmt Lift one hand and shake

01n_shake_head1.dmt Open and Shake one’s arm(without raising)

109

CHAPTER 06- Hovis Genie Basic Example

File Name Content

01n_tooth.dmt Brush teeth

01n_turn_360_0.dmt Rotate 360 degrees from same spot (once)

01n_turn_360_1.dmt Rotate 360 degrees from same spot (repeat)

01n_turn_head_l.dmt Turn head (R)

01n_turn_head_r.dmt Turn head (L)

01n_turn_love.dmt Rotate I love you(Lift both arms and make heart (circle))

01n_turn_shake.dmt
Fold both arms at chest and shake wheel L/R(Like

shaking body)

01n_up_hand.dmt LIft one arm

01n_watch_clock.dmt
Look at wrist watch (Bend elbow and move handclose

to face)

01n_wave.dmt Wave both arms

basicpose.dmt Basic pose

mid_rotate.dmt Rotate MID from portrait to landscape

motion_highwalk.dmt Walk fast

motion_slow_walk.dmt Walk slow

motion_standby.dmt Standby

motion_walk.dmt Walk normal

In this example we will use the installed basic motions to run robot motion. Motion

control is comprised of activity_testmotion.xml and TestMotionActivity.java. Add

two files to the GenieApiDemo project. Edit activity_testmotion.xml as following to

create UI for motion control.

 1: <?xml version=”1.0” encoding=”utf-8”?>

 2: <RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 3: android:layout_width=”match_parent”

 4: android:layout_height=”match_parent” >

 5:

 6: <!-- Test Title -->

 7: <TextView

Learning With HOVIS Genie/App Android Robot Programming

110

 8: android:id=”@+id/tv_title”

 9: android:layout_width=”match_parent”

 10: android:layout_height=”85dp”

 11: android:text=”Motion test”

 12: />

 13:

 14: <!-- Motion list -->

 15: <ListView

 16: android:id=”@+id/lv_motions”

 17: android:layout_width=”match_parent”

 18: android:layout_height=”wrap_content”

 19: android:layout_below=”@id/tv_title”

 20: />

 21:

 22: </RelativeLayout>

[Listing 6-7] activity_testmotion.xml

[Diagram 6-5] Motion control

activity_testmotion.xml has <RelativeLayout> as the highest tag.<RelativeLayout>

contains <TextView> exoresing test title and <ListView> to express motion list. UI

expressed in screen is shown in [Diagram 6-5].

111

CHAPTER 06- Hovis Genie Basic Example

 1: <?xml version=”1.0” encoding=”utf-8”?>

 2: <LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 3: android:layout_width=”match_parent”

 4: android:layout_height=”match_parent”

 5: android:orientation=”vertical” >

 6:

 7: <TextView

 8: android:id=”@+id/tv_name”

 9: android:layout_width=”wrap_content”

 10: android:layout_height=”40dp”

 11: android:gravity=”center_vertical”

 12: />

 13:

 14: </LinearLayout>

[Listing 6-7] listitems.xml

In TestMotionAcitivity.java, Adapter is central to the ListView list selection.Adapter

will be used in this example as we used Adapter in Chapter 6.1 to receive multiple

data sources when creating GridView. Excpet in Chapter 6.1, In order to receive

multiple data sources comprising of image and text, we defined lower widgets below

demoitems.xml and created MainAdapter. In this example since we will only be using

one Text View such as ‘Walk’, ‘taekwondo’, standard ArrayAdapter provided by Android

will be used. To define lower widget comprising of single TextView, we will add listitems.

xml to /res/layout and add the source.

In listitems.xml, horizontal shows size of the text string assigned to <TextView>, and

vertical 40 dp TextView. Widget apllicable to ‘Walk’ and ‘taekwondo’ in [Diagram 6-4]

Learning With HOVIS Genie/App Android Robot Programming

112

 Write TestMotionActivity.java in following order referring to [Listing 6-8].

1) Inherit BaseActivity

 public class TestMotionActivity extends BaseActivity …

2) Declare widget related member variable

 private ListView mMotionListView;

3) Create onCreate() - ListView and Adapter

First code that will be executed when TestMotionActivity first appears in the screen.

setContentView() function in line 24 calls UI defined in activity_testmotion.xml. In line

26, resource is assigned to member variable mMotionListView through ListView ID.

Line 28~30 assigns text string to ArrayList. Lines 32~35 are the core codes that create

ArrayAdapter object adapter. ArrayAdapter construtor and relavant codes are as follows.

ArrayAdapter(Context context, int resource, int textViewResourceId, List<T> objects)

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

 R.layout.listitems, R.id.tv_name, arrayList);

Android size unit

px - pixel

dp - deviece-independent pixel

Android has many units for expressing the size but dp (dpi) is used most commonly

used as widgets defined by px may show up differently depending on the resolution

of the device. Use of dp is recommended since widget defined dp will show same

size ratio regardless of the resoultion.

113

CHAPTER 06- Hovis Genie Basic Example

 1: package com.dongburobot.genieapidemo;

 2:

 3: import java.util.ArrayList;

 4:

 5: import android.content.Intent;

 6: import android.os.Bundle;

 7: import android.os.RemoteException;

 8: import android.util.Log;

 9: import android.view.KeyEvent;

 10: import android.view.View;

 11: import android.widget.AdapterView;

 12: import android.widget.AdapterView.OnItemClickListener;

 13: import android.widget.ArrayAdapter;

 14: import android.widget.ListView;

 15:

 16: public class TestMotionActivity extends BaseActivity

 implements OnItemClickListener {

 17:

 18: private ListView mMotionListView;

 19:

 20: @Override

 21: protected void onCreate(Bundle savedInstanceState) {

 22: // TODO Auto-generated method stub

 23: super.onCreate(savedInstanceState);

 24: setContentView(R.layout.activity_testmotion);

Second argument of the above code is the resource for the previousle declared listitems.

xml. Third argument is the TextView ID declared in listitems.xml. Fourth argument is

the list string that will be assigned in lines 28~30. These argument values are used by the

adapter to maintains data structure and value of the data that will be supplied to ListView.

In line 36, data is assigned to ListView by attaching adatpter to the listView. In line 37,

Touch event is registered to ListView.

4) Inherit onItemClickListener intreface multiple times and then create onItemClick()

Function processing user touch event. ListView position is counted from 0. In this example

‘Walk’ is, ‘taekwondo’ is 1.

Learning With HOVIS Genie/App Android Robot Programming

114

 25:

 26: mMotionListView = (ListView)findViewById(R.id.lv_motions);

 27:

 28: ArrayList<String> arrayList = new ArrayList<String>();

 29: arrayList.add(“Walk”);

 30: arrayList.add(“tekwuando”);

 31:

 32: ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

 33: R.layout.listitems,

 34: R.id.tv_name,

 35: arrayList);

 36: mMotionListView.setAdapter(adapter);

 37: mMotionListView.setOnItemClickListener(this);

 38: }

 39:

 40: @Override

 41: public boolean onKeyDown(int keyCode, KeyEvent event) {

 42: if (keyCode == KeyEvent.KEYCODE_BACK) {

 43: Intent intent = new Intent(this, MainActivity.class);

 44: startActivity(intent);

 45: }

 46: return super.onKeyDown(keyCode, event);

 47: }

 48:

 49: public void onItemClick(AdapterView<?> parent, View v, int position, long id) {

 50: if (myRobotApp.mBinder == null)

 51: return;

 52:

 53: try {

 54: myRobotApp.mBinder.dmel_motion_stop(getComponentName());

 55:

 56: switch (position) {

 57: case 0:

 58: myRobotApp.mBinder.

 dmel_motion_play(getComponentName(), “motion_walk.dmt”);

115

CHAPTER 06- Hovis Genie Basic Example

 59: Log.i(“motion”, “0 clicked”);

 60: break;

 61: case 1:

 62: myRobotApp.mBinder.

 dmel_motion_play(getComponentName(), “01n_tekwuando_wide.dmt”);

 63: Log.i(“motion”, “1 clicked”);

 64: default:

 65: break;

 66: }

 67:

 68: Thread.sleep(1000);

 69: } catch (RemoteException e) {

 70: e.printStackTrace();

 71: } catch (InterruptedException e) {

 72: e.printStackTrace();

 73: }

 74: }

 75: }

[Listing 6-7] listitems.xml

onItemClick() runs when user touches an item in the list. When the item in the list is

touched, myRobotApp.mBinder will be in line 50 for service connection error. If no error

is found, command stopping current motion will be sent and new motion will start.

myRobotApp.mBinder.dmel_motion_stop(getComponentName());

…

myRobotApp.mBinder.dmel_motion_play(getComponentName(), File name);

Learning With HOVIS Genie/App Android Robot Programming

116

Codes in Lines 56~66 executes motion based on position of the touch on the list. According

to the code, motion_walk.dmt motion will be executed when ‘Walk’ is selected and 01n_

tekwuando_wide.dmt motion when ‘taekwondo’ is selected.

Word of caution, motion file must exist in SD card /dongbu/motion. Try adding other

motions to the list or add your own motion created by DR-SIM.

dmel_motion_play

void dmel_motion_play(ComponentName cn,
 java.lang.String motion)
 throws android.os.RemoteException
Play robot motion . (default path /sdcard/dongbu/motion/)
Parameters:
cn - Component name
motion - Motion file name ex) “01n_shake_head.dmt”
Throws:
android.os.RemoteException

dmel_motion_stop

void dmel_motion_stop(ComponentName cn)
 throws android.os.RemoteException
Stop current motion
Parameters:
cn - Component name
Throws:
android.os.RemoteException

117

CHAPTER 06- Hovis Genie Basic Example

In this chapter, we will learn about controlling Hovis Genie head LEDs. Hovis

Geniehas LED contol board installed in the head which can turn on/off the LEDs on

the eye, mouth, ear, and forehead. LED composition is as shown in the diagram.

http://www.dongburobot.com/jsp/cms/view.jsp?code=100122&isSkin=Y&cmd=view&boardC

ode=100074&bseq=3703

[Diagram 6-6] Hovis Genie Head LED position

(1-eye, 2-mouth, 3-ear, 4-forehead)

4

33

1

2

6.4 Head LED Control

Eye LEDs are located in position 1. Each eye has 8 red and 8 blue LEDs for total of 16

LEDs for each eye. Red and blue LEDs can be set separately and purple color effect

can be created by turning on both red and blue LEDs at the same time.

Mouth LEDs are located in position 2. There are 3 LEDs at the mouth. Ear LEDs

are located at position 3. There are 4 LEDs located at ear. Ear LEDs can only be

controlled as group of 4. Forehead LEDs are located at position 4. Brightness of

forehead LED can be adjusted. Mouth, ear, and forehead LEDs have single color.

Learning With HOVIS Genie/App Android Robot Programming

118

 1: <?xml version=”1.0” encoding=”utf-8”?>

 2: <RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 3: android:layout_width=”match_parent”

 4: android:layout_height=”match_parent” >

 5:

 6: <!-- Test Title -->

 7: <TextView

 8: android:id=”@+id/tv_title”

 9: android:layout_width=”match_parent”

 10: android:layout_height=”85dp”

 11: android:text=”LED test”

 12: />

 13:

 14: <!-- LED control list -->

 15: <ListView

 16: android:id=”@+id/lv_ledcontrols”

 17: android:layout_width=”match_parent”

 18: android:layout_height=”wrap_content”

 19: android:layout_below=”@id/tv_title”

 20: />

 21:

 22: </RelativeLayout>

[Listing 6-7] activity_testmotion.xml

Head LED control UI is very similar to Motion control UI in Chapter 6.3 Screen is

same as [Diagram 6-7].

To control the Head LEDs more efficiently, robot service provides functions for

modules instead of control for each individual LED. These functions are very useful

for expressing robot emotions and visual effects through LEDs.

Add activity_testled.xml and TestLedActivity.java required for Head LED control

to the GenieApiDemo project and open activity_testled.xml to create UI for the

example.

119

CHAPTER 06- Hovis Genie Basic Example

Create lower widget which will become an item in the ListView. , Add text string

datat from onCreate() and create Adapter. Register Adapter to the ListView

to make it appear on the screen. Set touch event to the ListView amd jnherit

onItemClickListener interface to create onItemClick().

istitems.xml assigning lower widgets in ListView was already created in Chapter

6.3 so it will be skipped in this chapter. TestLedActivity.java is also similar. Refer

to Chapger 6.3.

 1: package com.dongburobot.genieapidemo;

 2:

 3: import java.util.ArrayList;

 4:

 5: import android.content.Intent;

 6: import android.os.Bundle;

 7: import android.os.RemoteException;

 8: import android.view.KeyEvent;

 9: import android.view.View;

 10: import android.widget.AdapterView;

 11: import android.widget.AdapterView.OnItemClickListener;

 12: import android.widget.ArrayAdapter;

 13: import android.widget.ListView;

[Diagram 6-7] Head LED control

Learning With HOVIS Genie/App Android Robot Programming

120

 14:

 15: public class TestLedActivity extends BaseActivity implements OnItemClickListener {

 16:

 17: private ListView mLedControlListView;

 18:

 19: @Override

 20: protected void onCreate(Bundle savedInstanceState) {

 21: // TODO Auto-generated method stub

 22: super.onCreate(savedInstanceState);

 23: setContentView(R.layout.activity_testled);

 24:

 25: mLedControlListView = (ListView)findViewById(R.id.lv_ledcontrols);

 26:

 27: ArrayList<String> arrayList = new ArrayList<String>();

 28: arrayList.add(“All off”);

 29: arrayList.add(“All on”);

 30:

 31: ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

 32: R.layout.listitems,

 33: R.id.tv_name,

 34: arrayList);

 35: mLedControlListView.setAdapter(adapter);

 36: mLedControlListView.setOnItemClickListener(this);

 37:

 38: }

 39:

 40: @Override

 41: public boolean onKeyDown(int keyCode, KeyEvent event) {

 42: if (keyCode == KeyEvent.KEYCODE_BACK) {

 43: Intent intent = new Intent(this, MainActivity.class);

 44: startActivity(intent);

 45: }

 46: return super.onKeyDown(keyCode, event);

 47: }

 48:

 49: public void onItemClick(AdapterView<?> parent, View v, int position, long id) {

 50: turnAllLedOff();

121

CHAPTER 06- Hovis Genie Basic Example

 51: try {

 52: Thread.sleep(300);

 53: } catch (InterruptedException e) {

 54: e.printStackTrace();

 55: }

 56:

 57: switch (position) {

 58: case 0:

 59: turnAllLedOff();

 60: break;

 61: case 1:

 62: turnAllLedOn();

 63: break;

 64: default:

 65: break;

 66: }

 67:

 68: }

 69:

 70:

 71: // beam 0 : Off, 1 : On weak, 2 : On medium, 3 : On strong 72: // eyeCode

- 0 : Maintain status, 1 : Round & Round, 2 : Blink eyebrow, 3 : Stop eyebrow,

 73: // 4 : All on, 5 : All blink, 6 : L/R effect, 7 : Top/bottom effect, 8 : Off

 74: // earCode - 0 : Maintain status, 1 : On, 2 : Off, 3 : Blink

 75: // colorCode - 1 : RED LED, 2 : BLUE LED, 3 : PURPLE (RED + BLUE) LED

 76: // mouthCode - 0 : Maintain status, 1 : Middle ON, 2 : 3 ON, 3 : Middle blink, 4

: All 3 blink, 5 : Talk, 6: Off

 77: private void turnAllLedOff() {

 78: if (myRobotApp.mBinder == null)

 79: return;

 80:

 81: try {

 82: myRobotApp.mBinder.dmel_hri_set_mouth_led(getComponentName(), 6);

 83: myRobotApp.mBinder.dmel_hri_set_ear_led(getComponentName(), 2);

 84: myRobotApp.mBinder.dmel_hri_set_brow_beam(getComponentName(), 0);

Learning With HOVIS Genie/App Android Robot Programming

122

 85: myRobotApp.mBinder.dmel_hri_set_eye_led(getComponentName(), 8, 1);

 86: } catch (RemoteException e) {

 87: e.printStackTrace();

 88: }

 89:

 90: }

 91:

 92: private void turnAllLedOn() {

 93: if (myRobotApp.mBinder == null)

 94: return;

 95:

 96: try {

 97: myRobotApp.mBinder.dmel_hri_set_mouth_led(getComponentName(), 2);

 98: myRobotApp.mBinder.dmel_hri_set_brow_beam(getComponentName(), 2);

 99: myRobotApp.mBinder.dmel_hri_set_ear_led(getComponentName(), 1);

 100: myRobotApp.mBinder.dmel_hri_set_eye_led(getComponentName(), 4, 2);

 101: } catch (RemoteException e) {

 102: e.printStackTrace();

 103: }

 104: }

 105: }

[Listing 6-10] TestLedActivity.java

123

CHAPTER 06- Hovis Genie Basic Example

dmel_hri_set_ear_led

void dmel_hri_set_ear_led(ComponentName cn,
 int earCode)
 throws android.os.RemoteException
Ear LED setup.
Parameters:
cn - Component name
earCode - 0 : maintain status, 1 : On, 2 : Off, 3 : Blink
Throws:
android.os.RemoteException

In this example, ListView items are ‘All off’ and ‘All on’. Each touch will call

turnAllLedOff() and turnAllLedOn() in lines 57~65 of onItemClick() to turn on/

off all HEad LEDs. turnAllLedOff() and turnAllLedOn() calls following 4 functions.

These LED functions have some parameters that control robot’s eye, mouth, ear and

forehead LEDs. The functions are as followings.

dmel_hri_set_brow_beam

void dmel_hri_set_brow_beam(ComponentName cn,
 int brightness)
 throws android.os.RemoteException
Setup forehead LED.
Parameters:
cn - Component name
brightness - 0 : Off, 1 : Weak On, 2 : Medium On, 3 : Bright On
Throws:
android.os.RemoteException

dmel_hri_set_eye_led

void dmel_hri_set_eye_led(ComponentName cn,
 int eyeCode,
 int colorCode)
 throws android.os.RemoteException
Setup eye LED.
Parameters:
cn - Component name
eyeCode - 0 : maintain status, 1 : Round & Round, 2 : Eyebrow blink, 3 : Eyebrow stop, 4
: All On, 5 : All Blink, 6 : L/R effect, 7 : Top/bottom effect, 8 : Off
colorCode - 1 : RED LED, 2 : BLUE LED, 3 : PURPLE (RED + BLUE) LED
Throws:
android.os.RemoteException

Learning With HOVIS Genie/App Android Robot Programming

124

dmel_hri_set_mouth_led

void dmel_hri_set_mouth_led(ComponentName cn,
 int mouthCode)
 throws android.os.RemoteException
Mouth LED setup.
Parameters:
cn - Component name
mouthCode - 0 : maintain status, 1 : Middle ON, 2 : 3 ON, 3 : Middle blink, 4 : 3 blink, 5 :
Talk
Throws:
android.os.RemoteException

Mouth, forehead, and ear LEDs are single colored and robot service function does

not have argument for color section.Eye LED control function dmel_hri_set_eye_

led() has argument of selecting colors since eye LEDs are comprised of 8 red LEDs

and 8 blue LEDs for each ye. (Puple color effect appears when both Red and Blue

LEDs are on). Since controlling 32 eye LEDs individually become very complicated,

LEDs are controlled by playing pre defined effects.

Code values for each function argument is as follows [Table 6-3].

Code
Vlaue

Eye LED Eye Color Ear Mouth Forehead

0
Maintain
status

Maintain
status

Maintain
status

Off

1
Round &
Round

Red On Middle ON Weak

2 Blink eyebrow Blue Off 3 ON Medium

3
Stope

eyebrow
Purple Blink Middle blink Strong

4 All On 3 blink

5 All Blink Talk

6 L/R effect Off

7
Up/Down

effect

8 Off

Examine turnAllLedOff() in lines 82~85 which turn off all LEDs using [6-3]as ref-

erence.

125

CHAPTER 06- Hovis Genie Basic Example

myRobotApp.mBinder.dmel_hri_set_mouth_led(getComponentName(), 6);

myRobotApp.mBinder.dmel_hri_set_ear_led(getComponentName(), 2); myRobotApp.

mBinder.dmel_hri_set_brow_beam(getComponentName(), 0); myRobotApp.mBinder.

dmel_hri_set_eye_led(getComponentName(), 8, 1)

 In line82, code value assigned as dmel_hri_set_mouth_led() function argument

value is 6. In [Table6-2] code 6 for mouth is off, therefore all three mouth LEDs

will be turned off. Code value for hri_set_ear_led() in line 83 is 2. This code value

will turn off all ear LEDs. dmel_hri_set_brow_beam() in next line is forehead LED

brightness function and the code value 0 will turn off the LED. dmel_hri_set_eye_

led() argument in last line had eye LED code 8, color code value 1. Eye LED code

value 8 turns off the LEDs, therefore Eye color value of 1 has no effect. assign any

color to the Eye LEDs even though all Eye ELDs will be turned off.

Analyze turnAllLedOn() in linese 97~100 using [Table 6-2] and you will notice that

it will turn on all LEDs.

Try adding other items to the screen list to experiment with different effcts. If middle

mouth LED blinks and ear and mouth LEDs can’t be controlled. This signfies LED

control board error. Board will be automatically restored in robot autonmous mode.

myRobotApp.mBinder.dmel_hri_set_mouth_led(getComponentName(), 2);

myRobotApp.mBinder.dmel_hri_set_brow_beam(getComponentName(),2); myRobotApp.

mBinder.dmel_hri_set_ear_led(getComponentName(), 1); myRobotApp.mBinder.dmel_

hri_set_eye_led(getComponentName(), 4, 2);

Learning With HOVIS Genie/App Android Robot Programming

126

TTS refers tp Text-to-Speech and changes text to robot voice. For example, When

robot receives text input “Hello” it will output “Hello” by voice. TTS function is used

in majority of the robots as it allows robot to output voice like human.

Hovis Genie has Korean TTS engine installed. This example will use Korean TTS to

test robot voice function.

Add activity_testtts.xml for creating UI in TTS control Activity in /res/layout and

add matching TestTTSActivity.java in /src/com/dongburobot/genieapidemo. Open

activity_testtts.xml file and edit the code using [Listing 6-11] as reference.

 1: <?xml version=”1.0” encoding=”utf-8”?>

 2: <RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 3: android:layout_width=”match_parent”

 4: android:layout_height=”match_parent” >

 5:

 6: <!-- Test title -->

 7: <TextView

 8: android:id=”@+id/tv_title”

 9: android:layout_width=”match_parent”

 10: android:layout_height=”85dp”

 11: android:text=”LED test”

 12: />

 13:

 14: <!-- LED control list -->

 15: <EditText

 16: android:id=”@+id/et_ttsmessage”

 17: android:layout_width=”match_parent”

 18: android:layout_height=”wrap_content”

 19: android:hint=”Input your message please..”

 20: android:maxLength=”140”

6.5 TTS Control

127

CHAPTER 06- Hovis Genie Basic Example

 20: android:maxLength=”140”

 21: android:layout_below=”@id/tv_title”

 22: />

 23:

 24: <!-- Start and end button -->

 24: <!-- Start and end button -->

 25: <LinearLayout

 26: android:layout_width=”match_parent”

 27: android:layout_height=”wrap_content”

 28: android:layout_alignParentBottom=”true”>

 29: <Button

 30: android:id=”@+id/btn_ttssend”

 31: android:layout_width=”160dp”

 32: android:layout_height=”wrap_content”

 33: android:text=”send”

 34: />

 35: <Button

 36: android:id=”@+id/btn_ttscancel”

 37: android:layout_width=”160dp”

 38: android:layout_height=”wrap_content”

 39: android:text=”cancle”

 40: />

 41: </LinearLayout>

 42: </RelativeLayout>

[Listing 6-7] activity_testmotion.xml

Learning With HOVIS Genie/App Android Robot Programming

128

[Diagram 6-8] TTS Control Screen

<RelativieLayout> is the highest tag in TTS contrl screen layout. Place each widget

in relative position to other widgets.In case of <TextView> which does not have

relative position property, it will be placed at top left of the screen.<EditText> will

be placed below <TextView> as assigned by the property in line 21. <LinearLayout>

will be placed at bottom left as assigned by the property in line 28. <LinearLayout>

contains two lower <Button> widgets. These <Button> widgets position is influenced

by the <LinearLayout> and they will be placed at bottom of the screen. [Diagram

6-8] shows structure with widgets.

In TTS control screen, user input is done through <EditText>. <EditText>

widget shown in [Diagram 6-8]is surrounded by gold colored box. Touching the

<EditText>will display keyboard screen to input text. Pressing Back button will make

the keyboard disappear. <EditText> input can be up to 140 characters as sepecified

byt the android:maxLength=”140” propety in line 20. If <EditText> text input goes

over to next line due to large amount of text, android:layout_height=”wrap_content”

will increase the size of <EditTex> by size of the content.

UI for example created. Open TestTTSActivity.java and edit the source code as

follows.

129

CHAPTER 06- Hovis Genie Basic Example

1) Inherit BaseActivity

 public class TestOmniwheelActivity extends BaseActivity …

2) Declare widget related member variable

 private EditText mTTSEditText;

 private Button mBtnTTSSend;

 private Button mBtnTTSCancel;

3) Create onCreate()

onCreate() loads layout XML, assigns resource to each widget member variable, and

sets up touch event to each button.

4) Inherit OnClickListener interface multiple times and then create onClick()

This example has one ‘Send’ and one ‘Cancel’ button. Create codes to process touch

event when button is pressed. First inherit OnClickListener interface multiple times.

 public class TestTTSActivity extends BaseActivity implements OnClickListener …

Add ‘implements OnClickListener’ and place mouse cursor on top of ‘TestTTSActivity’

to add onClick().

5) Create playTTS(), stopTTS()

Create methods playTTS() and stopTTS() for playing and cancelling TTS. These two

methods are called by onClick() when usere presses ‘Send’ or ‘Cancel’ button.

6) Create onBackPressed()

In previous examples Back button was processed using onKeyDown() overdrive.

ofonKeyDown() is called regardless of the key pressed and and Back button press

is determined and processed within the function. onBackPressed() is called only

when Back button is pressed. Robot App is designed so that only one Activity can

be maintained and prevents other Activity from being saved in the stack and Back

button press can end the App. onBackPressed() prevents Back button press from

ending the App and switches to main screen when button is pressed.

Learning With HOVIS Genie/App Android Robot Programming

130

 1: package com.dongburobot.genieapidemo;

 2:

 3: import android.content.Intent;

 4: import android.os.Bundle;

 5: import android.os.RemoteException;

 6: import android.view.View;

 7: import android.view.View.OnClickListener;

 8: import android.widget.Button;

 9: import android.widget.EditText;

 10:

 11: public class TestTTSActivity extends BaseActivity implements OnClickListener {

 12:

 13: private EditText mTTSEditText;

 14: private Button mBtnTTSSend;

 15: private Button mBtnTTSCancel;

 16:

 17: @Override

 18: protected void onCreate(Bundle savedInstanceState) {

 19: super.onCreate(savedInstanceState);

 20: setContentView(R.layout.activity_testtts);

 21:

 22: mTTSEditText = (EditText)findViewById(R.id.et_ttsmessage);

 23:

 24: mBtnTTSSend = (Button)findViewById(R.id.btn_ttssend);

 25: mBtnTTSCancel = (Button)findViewById(R.id.btn_ttscancel);

 26: mBtnTTSSend.setOnClickListener(this);

 27: mBtnTTSCancel.setOnClickListener(this);

 28: }

 29:

 30: @Override

 31: public void onBackPressed() {

 32: super.onBackPressed();

 33: Intent intent = new Intent(this, MainActivity.class);

 34: startActivity(intent);

 35: }

 36:

131

CHAPTER 06- Hovis Genie Basic Example

 37: public void onClick(View v) {

 38: switch (v.getId()) {

 39: case R.id.btn_ttssend:

 40: playTTS(mTTSEditText.getText().toString());

 41: break;

 42: case R.id.btn_ttscancel:

 43: stopTTS();

 44: break;

 45:

 46: default:

 47: break;

 48: }

 49: }

 50:

 51: private void playTTS(String msg) {

 52: stopTTS();

 53:

 54: if (myRobotApp.mBinder == null)

 55: return;

 56:

 57: try {

 58: myRobotApp.mBinder.dmel_tts_speak(getComponentName(), msg);

 59: } catch (RemoteException e) {

 60: e.printStackTrace();

 61: }

 62: return;

 63: }

 64:

 65: private void stopTTS() {

 66: if (myRobotApp.mBinder == null)

 67: return;

 68:

 69: try {

 70: myRobotApp.mBinder.dmel_tts_stop(getComponentName());

 71: Thread.sleep(200);

 72: } catch (RemoteException e) {

Learning With HOVIS Genie/App Android Robot Programming

132

Core of this example is in lines 51~79 where playTTS() and stopTTS() is called by

onClick().

playTTS() receives String as argument. In the example, when the user presses ‘Send’

button, Text string entered in EditText will be converted to String format and

entered as argument. Line 40.

40: playTTS(mTTSEditText.getText().toString());

private void playTTS(String msg) {

...

58: myRobotApp.mBinder.dmel_tts_speak(getComponentName(), msg);

…

}

 This is sent to TTS related robot service function dmel_tts_speak() in line 58 where

tex is coverted to voice.

dmel_tts_speak

void dmel_tts_speak(ComponentName cn,
 java.lang.String text)
 throws android.os.RemoteException
Play TTS(Text-to-Speech).
Parameters:
cn - Component name
text - text string to be converted to voice String ex)”Hello. I am Hovis Genie.”
Throws:
android.os.RemoteException

 [Listing 6-12] TestTTSActivity.java

 73: e.printStackTrace();

 74: } catch (InterruptedException e) {

 75: e.printStackTrace();

 76: }

 77: return;

 78: }

 79: }

133

CHAPTER 06- Hovis Genie Basic Example

In line 52, stopTTS() is executed to gurantee precise function of TTS. TTS command

priority lies with which ever TTS reserved the robot resource fist. Therefore, if TTS

is already running, Robot service will ignore the incoming TTS command.

stopTTS() in lines65~78 stops current TTS command. stopTTS() executes dmel_tts_

stop() internally. dmel_tts_stop() stops TTS but some dealy is possible. Therefore, to

insure safe operation Thread.sleep(200) can be used to add little bit of delay.

myRobotApp.mBinder.dmel_tts_stop(getComponentName());

Thread.sleep(200);

We used playTTS() and stopTTS() which use robot service functions to control TTS.

TTS has high usability and can make robot look intelligent. However, TTS voice will

not sound like human. To improve pronounciation, text could be written according

to how each word sounds.

dmel_tts_stop

void dmel_tts_stop(ComponentName cn)
 throws android.os.RemoteException
Stop TTS(Text-to-Speech).
Parameters:
cn - Component name
Throws:
android.os.RemoteException

Learning With HOVIS Genie/App Android Robot Programming

134

Hovis Genie has 5 PSD(Position Sensitive Device) sensors to recognize surrounding

environment. PSD sensor has maximum detection rang of 80cm to detech obstacles.

Robot can use the PSD sensors to avoid obstacles or used to create interesting

movment strategies.

[Diagram 6-9] Distance sensor placement

 Hovis Genie has five 1~5 PSD sensors counted clockwise direction starting from

the front. This example will receive PSD values in real time and output them to the

screen.

activity_testpsdsensor.xml is the PSD sensor control UI file and applicable

source isTestPSDActivity.java. Add the applicable file to the GenieApiDemo

project and open the activity_testpsdsensor.xml file to edit the codes as

following.

4

5

3

2
1

6.6 PSD Sensor Control

135

CHAPTER 06- Hovis Genie Basic Example

 1: <RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 2: xmlns:tools=”http://schemas.android.com/tools”

 3: android:layout_width=”match_parent”

 4: android:layout_height=”match_parent” >

 5:

 6: <!-- Text Title -->

 7: <TextView

 8: android:id=”@+id/tv_title”

 9: android:layout_width=”match_parent”

 10: android:layout_height=”85dp”

 11: android:text=”PSD Sensor test”

 12: />

 13:

 14: <LinearLayout

 15: android:layout_width=”match_parent”

 16: android:layout_height=”wrap_content”

 17: android:layout_below=”@id/tv_title”

 18: android:orientation=”vertical”

 19: >

 20: <!-- #1 PSD -->

 21: <LinearLayout

 22: android:layout_width=”match_parent”

 23: android:layout_height=”wrap_content”

 24: >

 25: <TextView

 26: android:layout_width=”70dp”

 27: android:layout_height=”wrap_content”

 28: android:text=”Front”

 29: />

 30: <TextView

 31: android:id=”@+id/tv_psd1”

 32: android:layout_width=”40dp”

 33: android:layout_height=”wrap_content”

 34: />

 35: <SeekBar

 36: android:id=”@+id/seekbar_psd1”

Learning With HOVIS Genie/App Android Robot Programming

136

 37: android:layout_width=”200dp”

 38: android:layout_height=”wrap_content”

 39: android:max=”80”

 40: />

 41: </LinearLayout>

 42:

 43: <!-- #2 PSD -->

 44: <LinearLayout

 45: android:layout_width=”match_parent”

 46: android:layout_height=”wrap_content”

 47: >

 48: <TextView

 49: android:layout_width=”70dp”

 50: android:layout_height=”wrap_content”

 51: android:text=”Front right”

 52: />

 53: <TextView

 54: android:id=”@+id/tv_psd2”

 55: android:layout_width=”40dp”

 56: android:layout_height=”wrap_content”

 57: />

 58: <SeekBar

 59: android:id=”@+id/seekbar_psd2”

 60: android:layout_width=”200dp”

 61: android:layout_height=”wrap_content”

 62: android:max=”80”

 63: />

 64: </LinearLayout>

 65:

 66: <!-- #3 PSD -->

 67: <LinearLayout

 68: android:layout_width=”match_parent”

 69: android:layout_height=”wrap_content”

 70: >

 71: <TextView

137

CHAPTER 06- Hovis Genie Basic Example

 72: android:layout_width=”70dp”

 73: android:layout_height=”wrap_content”

 74: android:text=”Back right”

 75: />

 76: <TextView

 77: android:id=”@+id/tv_psd3”

 78: android:layout_width=”40dp”

 79: }

 80:

 81: <SeekBar

 82: android:id=”@+id/seekbar_psd3”

 83: android:layout_width=”200dp”

 84: android:layout_height=”wrap_content”

 85: android:max=”80”

 86: />

 87: </LinearLayout>

 88:

 89: <!-- #4 PSD -->

 90: <LinearLayout

 91: android:layout_width=”match_parent”

 92: android:layout_height=”wrap_content”

 93: >

 94: <TextView

 95: android:layout_width=”70dp”

 96: android:layout_height=”wrap_content”

 97: android:text=”Back left”

 98: />

 99: <TextView

 100: android:id=”@+id/tv_psd4”

 101: android:layout_width=”40dp”

 102: android:layout_height=”wrap_content”

 103: />

 104: <SeekBar

 105: android:id=”@+id/seekbar_psd4”

 106: android:layout_width=”200dp”

 107: android:layout_height=”wrap_content”

Learning With HOVIS Genie/App Android Robot Programming

138

 108: android:max=”80”

 109: />

 110: </LinearLayout>

 111:

 112: <!-- #5 PSD -->

 113: <LinearLayout

 114: android:layout_width=”match_parent”

 115: android:layout_height=”wrap_content”

 116: >

 117: <TextView

 118: android:layout_width=”70dp”

 119: android:layout_height=”wrap_content”

 120: android:text=”전방좌측”

 121: />

 122: <TextView

 123: android:id=”@+id/tv_psd5”

 124: android:layout_width=”40dp”

 125: android:layout_height=”wrap_content”

 126: />

 127: <SeekBar

 128: android:id=”@+id/seekbar_psd5”

 129: android:layout_width=”200dp”

 130: android:layout_height=”wrap_content”

 131: android:max=”80”

 132: />

 133: </LinearLayout>

 134: </LinearLayout>

 135:

 136: <!-- Start and Stop button -->

 137: <LinearLayout

 138: android:layout_width=”match_parent”

 139: android:layout_height=”wrap_content”

 140: android:layout_alignParentBottom=”true”>

 141: <Button

 142: android:id=”@+id/btn_start”

 143: android:layout_width=”160dp”

139

CHAPTER 06- Hovis Genie Basic Example

 144: android:layout_height=”wrap_content”

 145: android:text=”Start”

 146: />

 147: <Button

 148: android:id=”@+id/btn_stop”

 149: android:layout_width=”160dp”

 150: android:layout_height=”wrap_content”

 151: android:text=”End”

 152: />

 153: </LinearLayout>

 154:

 155: </RelativeLayout>

This PSD control UI source code is quite long but structure is simple due to repeating

widgets.

Highest tag is <RelativeLayout>. Tags below <RelatvieLayout> are <TextViw> in lines

7~12, , <LinearLayout> in lines14~134, and <LinearLayout> in lines 137~153.

<TextView> outputs “PSD Sensor test”, <LinearLayout> expresses 5 PSD information,

<LinearLayout> expresses ‘Start’ and ‘end’ button.

Tags contained in <RelativeLayout> expresses widget position in relative terms.

<TextView> in lines 7~12 does not have layout proprety and it is placed top left of the

parent tag. <LinearLayout> in lines 14~134 is placed below <TextView> according to

the property in line 17. In accordance with the property in line 140s, <LinearLayout>

in lines 137~135 is placed at lowest section of parent <RelativeLayout>.

<LinearLayout> in lines14~134 which is lower tag of <RelativeLayout> includes 5

<LinearLayout> which outpus #1~5 PSD sensor information. 5 <LinearLayout> is

placed verically. This is determined by the parent tag <LinearLayout> property in

line 18.

5 <LinearLayout> has 3 widgets, <TextView>, <TextView>, and <SeekBar> as

lower tags used for actual PSD information output.Each <LinearLayout> does not

have vertical or horizontal position setup, therefore included 3 widgets are placed

horizontally.

[Lisiting 6-11] activity_testpsdsensor.xml

Learning With HOVIS Genie/App Android Robot Programming

140

[Diagram 6-10] PSD sensor control screen

As 5 <LinearLayout> with included 3 widgets are identical except for the ID. we

will look at <LinearLayout> only. <LinearLayout> in lines 21~41 outputs #1 PSD

information. First lower tag <TextView> expresses sensor placement postion by text.

2nd <TextView> outputs measured distance by PS sensor in cm unit. <SeekBar>

expresses distance value in graphics. <SeekBar> has property android:max=”80”which

sets <SeekBar> range from 0~80. 80 is the maximum distance PSD sensor can

measure.

<LinearLayout> is located at the bottom. <LinearLayout> in lines 137~153 contains

two <Button> widgets. <LinearLayout> does not have vertical or horizontal property,

therefore buttons are placed horizontally.

 UI is shown in [Diagram 6-10].

141

CHAPTER 06- Hovis Genie Basic Example

Open TestPSDActivity.java and start programming to control PSD senspr. Guide for

writing source code is shown below.

1) Inherit BaseActivity

 public class TestPSDActivity extends BaseActivity …

2) Widget related member variable declaration and Handler declaration

Refer to lines17~23 and declare widget and handler object as member variable.

mTvPSD is a TextView object variable which is used to putput each PSD value to

TextView, mSbPSD is a object variable used to output distance value to SeekBar.

mBtnStart are mBtnStop button objects for controlling buttons.

Handler is the core subject of this example. Handler receives PSD sensor value in

real time and updates them on the screen.

Handler and Thread has similar function. Within the prcocess, Thread executes an

independnt job in using parallel process. There is a need for thread function in this

example since PSD sensor value has to be read continuously and updated on the

screen in real time and also user touch input has to be processed.

 Unfortunately, Thread has a major defect that prevents us from using it in our

example. Thread is not stable in GUI(Graphic User Interface) and causes error in

majority of cases when Thread is used for screen related work in Android. Handler

is used to prevent this kind of error by thread. Handler contains Thread and Thread

Queue internally. Refer to Android developers site for more detailed information

concerning Handler. For now, it is enough know that Handler will be always used

for UI related work.

3) Create onCreate()

onCreate() loads layout XML file from lines 28~45. assigns resource to each widget

member variables. and sets up touch event for each button.

private TextView[] mTvPSD = new TextView[5];

private SeekBar[] mSbPSD = new SeekBar[5];

private Button mBtnStart;

private Button mBtnStop;

private Handler mHandler;

Learning With HOVIS Genie/App Android Robot Programming

142

Most important sectio of onCreate() is Handler in lines 47~71. Registered Handler

starts and ends by message. This will be explained further after coding.

4) Inherit OnClickListener interface multiple times and create onClick()

This example has one”Start” button and one”End” button. “Start” starts PSD sensor value

reading and “End” ends the process. Inherit onClickListener interface multiple times

and create onClick().

 public class TestPSDActivity extends BaseActivity implements OnClickListener …

Add ‘implements OnClickListener’ from Eclipse and place the mouse cursor over

‘TestPSDActivity’ to create onClick(). Depending on the pressed button, onClick()

will send message to the Handler or end.

5) Create onPause()

onPause() is a method that is called when Activity ends. In this PSD control

Activity, codes will be added to end Handler process when Activity ends.

6) Create onBackPressed()

Robot App is designed to maintain only one activity and prevent other Activity

from being saved in the stack and APP could end when Back button is pressed.

onBackPressed() prevents Activity from ending when Back button is pressed and

switches screen to main screen.

143

CHAPTER 06- Hovis Genie Basic Example

 1: package com.dongburobot.genieapidemo;

 2:

 3: import android.annotation.SuppressLint;

 4: import android.content.Intent;

 5: import android.os.Bundle;

 6: import android.os.Handler;

 7: import android.os.RemoteException;

 8: import android.util.Log;

 9: import android.view.View;

 10: import android.view.View.OnClickListener;

 11: import android.widget.Button;

 12: import android.widget.SeekBar;

 13: import android.widget.TextView;

 14:

 15: public class TestPSDSensorActivity extends BaseActivity implements OnClickListener {

 16:

 17: private TextView[] mTvPSD = new TextView[5];

 18: private SeekBar[] mSbPSD = new SeekBar[5];

 19:

 20: private Button mBtnStart;

 21: private Button mBtnStop;

 22:

 23: private Handler mHandler;

 24:

 25: @Override

 26: protected void onCreate(Bundle savedInstanceState) {

 27: super.onCreate(savedInstanceState);

 28: setContentView(R.layout.activity_testpsdsensor);

 29:

 30: mTvPSD[0] = (TextView)findViewById(R.id.tv_psd1);

 31: mTvPSD[1] = (TextView)findViewById(R.id.tv_psd2);

 32: mTvPSD[2] = (TextView)findViewById(R.id.tv_psd3);

 33: mTvPSD[3] = (TextView)findViewById(R.id.tv_psd4);

 34: mTvPSD[4] = (TextView)findViewById(R.id.tv_psd5);

 35:

 36: mSbPSD[0] = (SeekBar)findViewById(R.id.seekbar_psd1);

Learning With HOVIS Genie/App Android Robot Programming

144

 37: mSbPSD[1] = (SeekBar)findViewById(R.id.seekbar_psd2);

 38: mSbPSD[2] = (SeekBar)findViewById(R.id.seekbar_psd3);

 39: mSbPSD[3] = (SeekBar)findViewById(R.id.seekbar_psd4);

 40: mSbPSD[4] = (SeekBar)findViewById(R.id.seekbar_psd5);

 41:

 42: mBtnStart = (Button)findViewById(R.id.btn_start);

 43: mBtnStop = (Button)findViewById(R.id.btn_stop);

 44: mBtnStart.setOnClickListener(this);

 45: mBtnStop.setOnClickListener(this);

 46:

 47: mHandler = new Handler() {

 48: @SuppressLint(“HandlerLeak”)

 49: public void handleMessage(android.os.Message msg) {

 50: if (myRobotApp.mBinder == null)

 51: return;

 52:

 53: double[] psdValue = null;

 54:

 55: try {

 56: psdValue =

 myRobotApp.mBinder.dmel_robot_get_obs(getComponentName());

 57: } catch (RemoteException e) {

 58: e.printStackTrace();

 59: }

 60:

 61: //UI Return

 62: for (int i = 0; i < 5; i++) {

 63: if ((int)(psdValue[i]*100) != 100) {

 64: mTvPSD[i].setText(String.valueOf((int)(psdValue[i]*100)));

 65: mSbPSD[i].setProgress((int)(psdValue[i]*100));

 66: }

 67: }

 68: mHandler.sendEmptyMessageDelayed(0, 100);

 69: };

 70: };

 71: }

 72:

145

CHAPTER 06- Hovis Genie Basic Example

 73: @Override

 74: public void onBackPressed() {

 75: super.onBackPressed();

 76:

 77: Intent intent = new Intent(this, MainActivity.class);

 78: startActivity(intent);

 79: }

 80:

 81: @Override

 82: protected void onPause() {

 83: if (mHandler != null) {

 84: if (mHandler.hasMessages(0))

 85: mHandler.removeMessages(0);

 86:

 87: mHandler = null;

 88: }

 89:

 90: super.onPause();

 91: }

 92:

 93: public void onClick(View v) {

 94: switch (v.getId()) {

 95: case R.id.btn_start:

 96: mHandler.sendEmptyMessage(0);

 97: break;

 98:

 99: case R.id.btn_stop:

 100: if (mHandler.hasMessages(0))

 101: mHandler.removeMessages(0);

 102: break;

 103:

 104: default:

 105: break;

 106: }

 107: }

 108: }

[Listing 6-14] TestPSDActivity.java

Learning With HOVIS Genie/App Android Robot Programming

146

In the example, “Start” button is used to send message to the registered

Handler.”Start” button is defined within onClick() line 96 and is as shown below.

mHandler.sendEmptyMeesage() sends message to the registered Handler.

sendEmptyMessage() argument value 0 distinguishes each message when multiple

messages are sent to the Handler. In this example, there is only one message so it

does not have much meaning in our example. When there are multiple messages,

msg.what is used from handleMessage() to distinquish the messages.There are

other ways of sending mesaage other than sendEmptyMessage(). Refer to the

follwoing link (http://developer.android.com/reference/android/os/Handler.html)

When message is sent by ‘Start’ button, handleMessage() is executed. Service

binding is checked in line50. In line 56, robot service function dmel_robot_get_obs()

that returns PSD sensor value is called.봇 서비스 함수 를 호출합니다.

96: mHandler.sendEmptyMessage(0);

onCreate() is called whenTestPSDActivity appears in the screeen.Handler is

registered in onCreate()

mHandler = new Handler() {

…

public void handleMessage(android.os.aMessage msg) {

…

};

};

147

CHAPTER 06- Hovis Genie Basic Example

When Handler object is assigned to mHandler, method handleMessage() has to be

redefined. handleMessage() is called when Handler receives a message and has an-

droid.os.Message msg as argument to distinquish the message.

dmel_robot_get_obs() returns double format line with size 5. #11~5 PSD sensor

values are assingned to lines 0~4. Values returned to each line has m unit. TextView

and SeekBar that outputs each PSD sensor value uses cm unit for distance value.

Lines 62~67 converts m to cm.

In line 68 of handleMessage(), message is sent to Handler once again to repeat the

same routine. This is to continuously update the PSD sensor values to the screen.

68: mHandler.sendEmptyMessageDelayed(0, 100);

dmel_robot_get_obs

double[] dmel_robot_get_obs(ComponentName cn)
 throws android.os.RemoteException
Return front detection PSD sensor value. From front to clockwise direction 0, 1, 2, 3, 4
Parameters:
cn - Component name
Returns:
Retun 5 front detection sensor values to double[0] ~ double[4]
Throws:
android.os.RemoteException

Line 100 checks if message distinguished as 0 is bens sent to the Handler. If

message exists, applicable message is deleted in line 101. After, message will no

longer be sent to the Handler and handleMessage() will not be called which will

end PSD value reading and screen update. Hovis Genie has 3 more PSD sensors to

detect the ground. Lower sensor locations are shown below.

100: if (mHandler.hasMessages(0))

101: mHandler.removeMessages(0);

In the example, “Start” button is used to send message to the registered

Handler.”Start” button is defined within onClick() line 96 and is as shown below.

Learning With HOVIS Genie/App Android Robot Programming

148

1

23

Lower detection sensor robot service is dmel_robot_get_cliff()

dmel_robot_get_cliff

double[] dmel_robot_get_cliff(ComponentName cn)
 throws android.os.RemoteException
Return ground detection PSD sensor value. From front to clockwise direction 0,1,2
Parameters:
cn - Component name
Returns:
Return 3 ground detection sensor values to double[0] ~ double[2
Throws:
android.os.RemoteException

[Diagram 6-11] Lower PSD sensor position

Use of lower sensors are almost identical to the example in this chapter and will be

let to the user to experiment with. Add GenieApiDemo XML and Java file to create

new Activity to experiment with the lower sensors. Another idesa is to create new

icons and txt to the Gridview in MainActiviy. Don’t forget to add new Activity to

AndroidManifest.xml.

149

CHAPTER 06- Hovis Genie Basic Example

In this example, we will learn about Hovis Genie touch sensor control. Touch

sensors can be used for interaction between the user and the robot. Genie has total

of 3 touch sensors located at head and at palm of both hands.

[Diagram 6-12] Touch sensor locaations (both palms, head)

Add activity_testtouchsensor.xml for creating UI in touch sensor Activity to /res/

layout. Also, add related TestTouchSensorActivity.java to /src/com/dongburobot/

genieapidemo.

This example will express touch to the palms and head using TTS. UI structure is

very simple as touch is not expressed to UI. Set <RelativeLayout> as highest tag and

put ‘Touch test’ in <TextView> to show current Activiy is touch sensor example. Edit

activity_testtouchsensor.xml codes as following.

6.7 Touch Sensor Control

Learning With HOVIS Genie/App Android Robot Programming

150

[Diagram 6-13] Touch sensor control screen

 1: <?xml version=”1.0” encoding=”utf-8”?>

 2: <RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 3: android:layout_width=”match_parent”

 4: android:layout_height=”match_parent” >

 5:

 6: <!-- Test Title -->

 7: <TextView

 8: android:id=”@+id/tv_title”

 9: android:layout_width=”match_parent”

 10: android:layout_height=”85dp”

 11: android:text=”Touch test”

 12: />

 13:

 14: </RelativeLayout>

[Listing 6-15] activity_testtouchsensor.xml

151

CHAPTER 06- Hovis Genie Basic Example

Next, pen TestTouchSensorActivity.java file and write source codes as following.

1) Inherit BaseActivity

 public class TestTouchSensorActivity extends BaseActivity …

2) Declare Handler member variable object

 private Handler mHandler;

3) Create onCreate()

onCreate() uses setContentView() to load XML file. Since this example does not

change the screen when UI is executed there is no need to assign widget member

variable for resouces declared in activity_testtouchsensor.xml.

As we used Handler to received PSD sensor value in real time in previous Chapter,

we will again use Handler to observe the sensors in real time to determine the

touch status of each sensor.Assign Handler object to mHandler and override

handleMessage().

4) Create onPause() To gurantee Handler closing when Activity ends, delete any

messages in Handler.

5) Create onBackPressed()

Pressing the Back button may end the App since robot App is designed to maintain

only one Activity and prevents other Activity from being saved in the Stack.

onBackPressed() prevents Back button from ending the App and switches the screen

to main screen.

 1: package com.dongburobot.genieapidemo;

 2:

 3: import android.content.Intent;

 4: import android.os.Bundle;

 5: import android.os.Handler;

 6: import android.os.Message;

 7: import android.os.RemoteException;

 8:

 9: public class TestTouchSensorActivity extends BaseActivity {

Learning With HOVIS Genie/App Android Robot Programming

152

 10:

 11: private Handler mHandler;

 12:

 13: @Override

 14: protected void onCreate(Bundle savedInstanceState) {

 15: super.onCreate(savedInstanceState);

 16: setContentView(R.layout.activity_testtouchsensor);

 17:

 18: mHandler = new Handler() {

 19: @Override

 20: public void handleMessage(Message msg) {

 21: super.handleMessage(msg);

 22:

 23: if (myRobotApp.mBinder == null)

 24: return;

 25:

 26: boolean[] isHandTouched = null;

 27: boolean isHeadTouched;

 28: boolean isNothingTouched = false;

 29:

 30: try {

 31: isHandTouched =

 myRobotApp.mBinder.dmel_hri_get_hand_touch_info(getComponentName());

 32: isHeadTouched =

 myRobotApp.mBinder.dmel_hri_get_head_touch_info(getComponentName());

 33:

 34: // Simultaneous touch not considered.

 35: if (isHandTouched[0]) {

 36: myRobotApp.mBinder.dmel_tts_speak(getComponentName(),

 “Left hand touched”);

 37: } else if (isHandTouched[1]) {

 38: myRobotApp.mBinder.dmel_tts_speak(getComponentName(),

 “Right hand touched”);

 39: } else if (isHeadTouched) {

 40: myRobotApp.mBinder.dmel_tts_speak(getComponentName(),

 “Head touched”);

153

CHAPTER 06- Hovis Genie Basic Example

[Listing 6-16] TestTouchSensorActivity.java

 41: } else {

 42: isNothingTouched = true;

 43: }

 44: }

 45: catch (RemoteException e) {

 46: e.printStackTrace();

 47: }

 48:

 49: if (isNothingTouched)

 50: mHandler.sendEmptyMessageDelayed(0, 100);

 51: else

 52: mHandler.sendEmptyMessageDelayed(0, 3000);

 53: }

 54: };

 55:

 56: mHandler.sendEmptyMessage(1000);

 57: }

 58:

 59: @Override

 60: protected void onPause() {

 61: super.onPause();

 62:

 63: if (mHandler != null) {

 64: if (mHandler.hasMessages(0))

 65: mHandler.removeMessages(0);

 66:

 67: mHandler = null;

 68: }

 69: }

 70:

 71: @Override

 72: public void onBackPressed() {

 73: super.onBackPressed();

 74:

 75: Intent intent = new Intent(this, MainActivity.class);

 76: startActivity(intent);

 77: }

 78: }

Learning With HOVIS Genie/App Android Robot Programming

154

TestTouchSensorActivity starts when touch sensor icon is touched from

MainActivity. onCreate() which is called at this time assings Handler oject and

defines handleMessage(). In line 56, message is sent to the Handler,thereby

executing defined handleMessage().

Functions dmel_hri_get_head_touch_info() and dmel_hri_get_hand_touch_info()

in lines 31~32 of handleMessage() returns touch status of head and both palm

sensors. Original format of each function is as follows.

dmel_hri_get_head_touch_info

boolean dmel_hri_get_head_touch_info(ComponentName cn)
 throws android.os.RemoteException
Retun head touch status.
Parameters:
cn - Component name
Returns:
Head touched true, not touched false return
Throws:
android.os.RemoteException

dmel_hri_get_hand_touch_info

boolean[] dmel_hri_get_hand_touch_info(ComponentName cn)
 throws android.os.RemoteException
Return hand touch (both hands) detection .
Parameters:
cn - Component name
Returns:
Touched true, not touched false return. boolean[2] (boolean[0] : left hand touch, boolean[1]
: right hand touch)
Throws:
android.os.RemoteException

In lines35~43, isHandTouched[] and isHeadTouched with returned values from the

fuctions are checked and touch status expressed by TTS. These codes do not process

simultaneous touches. When sensors are touched simutaneously, output to the TTS

follows following sequence. left hand, right hand, and head. If robot does not detect

any touches,isNothingTouched is set to true by line 42. This variable is used in the

if statement in lines 49~52. If isNothingTouched is true true, message is sent to

the Handler 100ms later to read the sensor value again for real time sensor touch

detection.

155

CHAPTER 06- Hovis Genie Basic Example

If isNothingTouched is false, it means one of the sensors detected a touch. In this

case, depending on the touched sensor, appropriate output is sent to TTS. 3000ms

time is line 52 gurantees time for TTS to finish output before sending message to

the Handler again.

Learning With HOVIS Genie/App Android Robot Programming

156

157

CHAPTER 06- Hovis Genie Basic Example

Learning With HOVIS Genie/App Android Robot Programming

158

